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paradigm for manipulating, predicting and analyzing biomacromolecular-ligand structure. 

A second synergistic goal is to apply the above methodology to design novel and potent 

anti-cancer agents. 
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The crucial role of the microtubule in cell division has identified tubulin as an interesting 

target for the development of therapeutics for cancer. Pyrrole-containing molecules derived 

from nature have proven to be particularly useful as lead compounds for drug 

development. We have designed and developed a series of substituted pyrroles that inhibit 

growth and promote death of breast tumor cells at nM and μM concentrations in human 

breast tumor cell lines.  In another project, stilbene analogs were designed and developed 

as microtubule depolymerizing agents that showed anti-leukemic activity. A molecular 

modeling study was carried out to accurately represent the complex structure and the 

binding mode of a new class of tubulin inhibitors that bind at the αβ-tubulin colchicine site. 

These studies coupled with HINT interaction analyses were able to describe the complex 

structure and the binding modes of inhibitors. Qualitative analyses of the results showed 

general agreement with the experimental in vitro biological activity for these derivatives. 

Consequently, we have been designing new analogs that can be synthesized and tested; we 

believe that these molecules will be highly selective against cancer cells with minimal 

toxicity to the host tissue.  

 

Another goal of our research is to develop computational tools for drug design. The 

development and implementation of a novel cavity detection algorithm is also reported and 

discussed. The algorithm named VICE (Vectorial Identification of Cavity Extents) utilizes 

HINT toolkit functions to identify and delineate a binding pocket in a protein. The program 

is based on geometric criteria and applies simple integer grid maps to delineate binding 
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sites. The algorithm was extensively tested on a diverse set of proteins and detects binding 

pockets of different shapes and sizes.   

 

The study also implemented the computational titration algorithm to understand the 

complexity of ligand binding and protonation state in the active site of HIV-1 protease.   

The Computational titration algorithm is a powerful tool for understanding ligand binding 

in a complex biochemical environment and allows generating hypothesis on the best model 

for binding.  
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CHAPTER 1 
 

 

Computer-Aided Drug Design: Introduction and Applications in 

Anti-Cancer Drug Design 

 

1.1 Introduction  

1.1.1 Cancer Therapy 
 
Cancer is a group of diseases in which there is an uncontrolled multiplication and spread 

of the body’s own cells within body in abnormal forms. Cancer may affect almost any 

tissue of the body and may metastasize to other tissues within the body. If the spread is 

not controlled, it can result in death. According to the American Cancer Society’s ‘Global 

Cancer Facts & Figures 2007’ and ‘Cancer Facts & Figures 2008’ cancer is the second 

leading cause of deaths after heart disease in developed countries and third leading cause 

of death in developing countries1,2. According to a report released by WHO, it is 

estimated that there will be 16 million new cases every year by 2020 and by 2050, the 

global burden is expected to grow to 27 million new cancer cases3,4.  Despite 

considerable progress in its diagnosis and treatment cancer continues to be one of the 

major health and socio-economic problems.   
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Over the last couple of decades, research has revealed considerable information about the 

molecular biology, pathobiochemistry and the intricate pathways involved in cancer5,6. 

Multiple factors are involved in the initiation, promotion and progression of cancer which 

lead to changes in the host genome and aberrant expression of oncogenes or tumor 

suppressor genes7-9. The abnormal cell multiplication and spread can be attributed to both 

external and internal factors. External factors like tobacco, chemicals, some viruses and 

radiations can cause mutations. These mutations cause altered gene expression which 

may activate protooncogenes to oncogenes like erbB, ras, myc etc.8,10,11. This, in turn, 

may result in uncontrolled cell proliferation and dedifferentiation. In-addition, inherited 

mutations in metabolism and certain immune conditions can cause expression of 

oncogenes11,12. These inadvertent factors may act together or in sequence to initiate or 

promote carcinogenesis and develop primary tumor, which, subsequently develops into a 

full fledged malignant tumor.   

 

Over the past decade, a number of chemotherapeutic drugs with different mechanism of 

actions and targeting various stages of metastatic cell growth have flooded the 

pharmaceutical market13,14. Based on their mechanism of action, these drugs can be 

classified into different classes as alkylating agents, antimetabolites, antibiotics, 

nucleoside analogues, antimitotic agents, etc15. However, most of these drugs are 

associated with severe toxicities and are not effective against all types of cancer. Thus, 

the search for new anticancer drugs and the development of more effective treatment 

strategies continues to be imperative16.  
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Until recently, anti-cancer drug discovery had extensively focused on the critical cell 

growth stage, mitosis, and any alteration or miscontrol of which can lead to development 

of human tumors. After the clinical success of taxol, microtubules have received 

considerable attention as the potential targets in the drug discovery process17-19. 

Microtubules form the cytoskeleton of a cell and are critical in mitosis and cell division. 

Tubulin, a heterodimeric protein forms the fundamental structural unit of a microtubule 

and joins in a head-to-tail fashion to form a long, filamentous protofilament. These 

protofilaments join laterally to form a hollow tube shaped protein polymer, the 

microtubule, which forms a mesh like network in eukaryotic cells. Besides playing an 

important role in mitosis, microtubules are involved in diverse cellular processes such as 

locomotion and intracellular transport. In addition, they play an important role in the 

development and maintenance of cell shape, signaling and transport of cellular 

components such as vesicles, mitochondria, etc. Thus, microtubules become an important 

target for anticancer drugs18. Since chemically diverse groups of anti-mitotic drugs that 

target microtubules and induce mitotic arrest have been used with great success against 

cancer, microtubules are considered as one of the best identified cancer targets17,18. 

However, research in this area is held back due to lack of a high resolution crystal 

structure that will aid in efficient structure-based drug design. Although there are several 

drugs which bind to tubulin protein and disrupt microtubule dynamics19, their clinical 

usefulness is limited by their unfavorable pharmacokinetic profiles and side effects. 

Furthermore, the limited availability and complexity in synthesis of pharmacologically 

active lead compounds and their chemical modification presents a major obstacle in 

improving the overall profile of a drug candidate. The complexity in development of anti-
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cancer chemotherapeutics makes it difficult to treat the disease and as a result it is 

necessary to come up with a rational program to identify potent leads that will stimulate 

the development of more effective anti-cancer chemotherapeutics. 

  

1.1.2 Drug Discovery 

Traditionally the strategy for discovering new drugs consisted of random screening of 

thousands of compounds derived from natural products to identify a lead20. Taking this 

lead structure, a program is developed for finding analogs exhibiting the desired 

biological properties. However, this entire process is highly laborious, expensive and 

conceptually inelegant. During last couple of decades pharmaceutical industry has 

experienced a paradigm shift in its approach to discover drugs. The traditional methods of 

drug discovery are now being supplemented by some more direct approaches which are 

derived from the understanding of the molecular processes involved in the underlying 

disease. Pure samples of protein targets are now being isolated and the three dimensional 

structure of both ligand and target site may be determined by X-ray crystallography or 

computational methods. It is now possible to learn how precisely topography of 

structures control the regulation of life processes. In order to further such progress, a 

rational approach to drug discovery has emerged in the pharmaceutical industry and has 

contributed to the rapid development of active candidates. New molecules are conceived 

either on the basis of the similarities they share with the known lead compound or their 

complementarities with 3D structures of known active sites21-23.  
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Understanding the three-dimensional aspects of drug-receptor interactions and their 

specificity at the molecular level has become a focal point in the modern drug discovery. 

Recent advances in genomics, bioinformatics, high-throughput screening and 

combinatorial synthesis are providing valuable inputs for the small molecular leads. 

However, optimizing the chemical and biochemical properties of a lead warrants 

substantial resources, which, in turn, will assist in the rational selection of “druggable” 

chemical entities, i.e., the selection of drug candidates/chemical entities that are more 

likely to have favorable characteristics for the treatment of human disease, thus 

improving the efficiency of the drug discovery/development process24.  

 

The drug discovery process is an interplay between computational and experimental 

approaches. Computer-aided drug design contributes to the understanding of 

biomolecular processes in a qualitative and quantitative way. It not only presents means 

for analyzing the details of the molecular machinery involved in a system and 

understanding the way the biological system functions, but also, provides the tools for 

predicting potential possibilities of the prototype candidate molecules. The techniques 

currently available provide extensive insights into the precise molecular features that are 

responsible for the regulation of the biological processes. These structural and 

physicochemical characteristics are of primary importance in understanding the structure 

–activity relationships and hence, the rational design of drug. Computer-aided drug 

design has opened the way to the discovery of lead molecules by a rational approach, and 

its central role in rational drug design has become fully apparent25.  
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1.1.3 Computer-Aided Molecular Design  

Computer-aided molecular design is expected to contribute to the discovery of novel 

molecules conceived on the basis of precise three dimensional stereochemical and 

physicochemical considerations. Systematic investigation of 3D stereochemical and 

physicochemical features of a protein and its binding site are crucial for designing small 

molecules that modulate protein functions. The ability to accurately predict binding mode 

from computer simulations is an invaluable resource in understanding biochemical 

process and drug action. Several aspects of molecular recognition can be discerned from 

the computational modeling of protein-ligand complex. Predicting the affinity of a new 

putative inhibitor for a macromolecular receptor is therefore imperative for designing of 

more potent analogs.  Though structural data available from x-ray crystallography and 

NMR has undeniably encouraged the efforts towards understanding the biological 

complexity of molecular recognition, fundamental uncertainties in binding site 

interactions and insufficient knowledge of well defined binding pockets are a major 

bottleneck in designing effective drugs with optimal activity.  

 

One important aspect in modeling bio-molecular systems or molecular recognition events 

is to accurately model the energetics of the binding. Although computational tools have 

been used to corroborate experimental data, the interaction energies calculated without 

the pH, ionization and entropic contributions are not always expected to correlate well 

with the experimentally measured free energies of binding. Subtle variations in 

microenvironment of a protein due to changes in experimental conditions such as pH, 
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buffer, ionic strength and temperature can influence the bio-molecular interactions and 

complex formation26. The primary goal of modeling studies is to accurately simulate the 

microenvironment of an active site. Calculation of binding free energy involves 

evaluation of both enthalpic and entropic contributions and forms an integral part of 

structure-based drug design protocol27,28. A meaningful description of the system can be 

obtained from thermodynamic analysis of protein-ligand interaction. To date, several 

structure-based modeling methods have been developed that give vital insight into the 

free energy changes of the system. Some of these methods viz. Free Energy Perturbation 

(FEP), Linear Interaction Energy (LIE), and Molecular Mechanics Poisson-Boltzmann 

Surface area (MM-PBSA) calculations involve extensive sampling of conformational 

states. However, the computational cost and human interaction necessary to perform 

these calculations make them less applicable for screening of a very large number of 

compounds and more viable in a later phase of drug design. These models can contribute 

significantly to the understanding of structural and energetic basis of protein-ligand 

interactions and hence, the structure-based design of novel compounds. Virtual screening 

methods involving database searching and docking tools along with de novo drug design 

tools facilitate identification and optimization of lead candidate. This research proposes 

the development and application of such tools to identify new anti-cancer drugs. In the 

subsequent subsections, the role of different computational approaches and the research 

plan to design and develop novel anti-cancer agents will be discussed. In section 1.2 we 

start with a brief review of approaches and technologies used in structure-based drug 

design. In the subsequent section 1.3 we highlight the HINT model and describe the 

Toolkit design. In the next section 1.4 we present a research plan for the design and 
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development of computational tools and their application in designing novel anti-cancer 

agents. 

 

1.2 Structure-Based Drug Design   

The purpose of structure-based drug design is to identify or construct molecules that bind 

with high affinity to a structurally defined binding site of a target protein. It is the process 

of using the three-dimensional structural information from a macromolecular target 

or/and ligand-target complexes to design novel drugs that may modulate target protein for 

desired activity. Recent computational approaches facilitate extraction of all the relevant 

information from available structures to understand specific molecular recognition events 

and to elucidate the function of the target macromolecule29.  

 

Structure-based drug design uses an efficient and intelligent approach to design improved 

ligands for the target24. The first step in structure-based drug design is the elucidation of 

three-dimensional structure of the target macromolecule (protein or nucleic acid) by X-

ray crystallography or NMR. In some cases, where direct structural information is 

unavailable, a homology model can be used as the starting point. However, there are 

instances where the function of a protein is unknown or the domain responsible for the 

activity is unidentified. Several methods are available for identification and 

characterization of the active site30,31. These programs can be sorted into different 

categories according to the approach they take to identify and delineate the active site (i) 

Evolutionary methods (structure/sequence alignments) (ii) probe/energy-based methods 



www.manaraa.com

   

 9

(iii) geometric approaches. All these methods are likely to evolve with the availability of 

more structural and sequence data from structural genomics projects.  

 

 Recent advances in combinatorial chemistry, high throughput chemical synthesis and 

screening are providing valuable inputs for the identification of small molecular 

leads21,22,32. Once a lead compound has been identified, an iterative process of lead 

optimization begins that involves solving the three-dimensional structure of the lead 

compound bound to the target. Development of new computational drug design tools 

facilitates examination and characterization of the complex structure and the types of 

interactions that the bound ligand makes with the protein. The binding site specifies 

structural and physicochemical constraints that must be met by any putative ligand. 

Hence, it is imperative to analyze the binding site by mapping the characteristics that are 

essential for ligand recognition. Besides shape complementarity, which plays an 

important role in protein–ligand interactions, physicochemical complementarity is 

essential for the specificity of binding33.  

 

Many promising approaches towards the goal of automated ligand design and 

optimization have been reported34-37. In particular, there has been a surge in new methods 

in the past few years, greatly extending the approaches to ligand design. Lead 

optimization methods may involve improvements to existing lead compounds by 

introducing new functionality to the lead scaffold. A combinatorial library, thus 

generated, is screened against the target protein. Although, the approach is rational and 

has been successfully applied, the analogs generated are very similar to the lead 
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compound and this limits the discovery of diverse library of compounds. In another 

widely used and more successful approach, large databases of compounds are virtually 

screened23. It is a two pronged approach, in which, while maintaining pharmacophoric 

constraints on one hand, new lead compounds with different scaffolds can be identified, 

thereby, introducing diversity to the compound library. These virtual screening methods 

take each proposed ligand and attempt to position it in the active site of the receptor, or 

match it to a pharmacophore model38.  The compounds are scored and ranked based on 

their steric and physicochemical complementarity with the target site and the best 

compounds are tested with biochemical assays39. Another promising approach to generate 

entire novel series of compounds is de novo lead generation programs36. In contrast to the 

whole molecule docking approach, in de novo methods, fragments of molecules, usually 

small functional groups are docked into the site, scored, and linked together using 

different scaffolds. The methodology allows the diverse set of fragments to exhaustively 

explore the binding site. The final in silico library of compounds can be scored, ranked 

and synthesized in the laboratory. However, the main drawback with this approach is the 

stability and synthetic feasibility of the compound suggested. There are many excellent 

drug design software methods available capable of either virtual screening or de novo 

generation36,40. However, the main advantage of virtual screening from a database is that 

the hit compounds can normally be purchased and tested easily. The success of all these 

approaches depends on how well the protein-ligand complex is characterized and scored. 

Various techniques have proven to be efficient tools for generating near-native 

conformations of complexes41. However, there are still some inherent limitations that 

need to be addressed. The robustness of any computational approach depends on how 
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accurately the experimental information is derived and parameterized to simulate a 

biological system. Due to the multiplicity of factors controlling the binding in any 

biological system, the phenomenon is particularly difficult to model computationally. 

Thus the most demanding and rewarding answer to this problem is hoped to lie in rational 

drug design.  

 

1.2.1 Microenvironment & Active Site 

Molecular interactions are regulated by subtle recognition and discrimination patterns 

where three dimensional features and microenvironment of the active site plays a vital 

role. The first step in any rational drug design protocol is to identify and elucidate the 

active site in a protein molecule. These active sites themselves might not be observed 

from an initial inspection. Protein surfaces are formed by numerous cavities and 

protrusions that are interlinked through small narrow channels and more than often 

interspersed with numerous holes/voids. The size and shape of protein cavities dictates 

the three-dimensional geometry of ligands and guides the important intermolecular 

interactions that mediate binding. The study of cavities may give an insight into the 

mechanism of such interactions and might help in the design of novel ligands, substrates 

or inhibitors. The determination of binding pockets is, therefore, an important step 

towards the rational design of novel ligands. An in-depth analysis and classification of 

pockets on the surface of protein structures might also improve our understanding of the 

processes involved in structure-based drug design.  
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A number of successful methods have been developed for predicting ligand binding 

sites30. These methods basically take different approaches depending on the kind of 

information available. Evolutionary methods apply a heuristic approach by finding 

characteristic sequence patterns based on structure/sequence alignments.  The presence 

and evolutionary conservation of certain residue pairs, cofactors, metal ions and binding 

motifs can, therefore, give useful clues for deducing the biochemical function of an 

uncharacterized protein and location of the binding sites. These computational methods 

are useful for predicting the location of binding sites when direct experimental 

information is unavailable.  

 

Methods that use structural information, when available, are particularly promising since 

they can potentially identify and characterize an active site based on the properties of the 

pocket. These methods apply energy/probe to generate functional maps of the binding 

site indicating the most favorable regions for placing ligand groups with similar 

properties to the probes. The atomic details can be further evaluated by mapping the 

physicochemical properties of the binding surface such as hydrophobicity or electrostatic 

potentials.  

 

The properties/microenvironment of the cavity are responsible for the substrate 

specificity. Theoretical calculations simulating the microenvironment of binding site are 

plagued by very drastic approximations. The phenomena of solvation/desolvation and the 

effects of varying pH and electrostatics are difficult to model computationally. Under 

physiological conditions a protein (enzyme/receptor) is present in a milieu of solvents, 
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even after crystallization a protein crystal may contain upto 70% of solvent42, which 

includes the buffer solution as well. Exposure of protein crystal structure to these solvents 

and buffers during crystallization may affect the microenvironment of active site as these 

solvent molecules may distribute themselves within the different pH zones or solvent 

channels according to the nature of the residues lining these solvent pockets. The altered 

microenvironment may influence the ligand binding43 due to change in the protonation 

states of the active site residues. The binding of ligand/small molecule to biological 

macromolecules is further complicated by peculiarities in the metal ion binding, preferred 

coordination numbers, relative affinity for specific ions, and preferred binding orientation 

and the lowest energy ionization state. It is, thus, not always possible to accurately 

resolve the biological microenvironment experimentally or to model it computationally. 

Thus calculation of optimum ionization/protonation state of complex formation is crucial 

for understanding binding process and step towards desigining more selective ligands.  

 

1.2.2   Mapping the Binding Site 

Structural and physicochemical characterization of an active site has become a major goal 

in drug discovery44. Understanding the chemistry behind molecular recognition is a 

central issue in drug design. With the advances in experimental techniques of X-ray 

crystallography and NMR, the elucidation of binding features on a protein structure has 

become more convenient. The computational mapping of a binding site to generate a 

pharmacophore model directly from a protein crystal structure can reveal key elements in 

protein-ligand binding45. Such knowledge is indispensable for rational drug design, since 

in majority of cases, receptor–drug interactions are specific in nature. Correctly mapping 
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the binding site is an important step in structure-based drug design and can be used as the 

starting point for finding new lead compounds or drug candidates46.  

 

The structure-based mapping of binding site or receptor-based pharmacophore generation 

provides an ensemble of steric and electronic features that ensures optimal interactions 

with a specific biological target structure, although a pharmacophore can be calculated 

from both ligands or/and protein structure47. A receptor-based pharmacophore defines 

essential features for molecular recognition and receptor-ligand interaction48. Structure-

based mapping uses features complementary to a protein site to define the shape and 

physiochemical constraint of the target site49. The mapping of crucial features is 

challenging since the number of ‘Hot Spots’ and their strength is critical for hypothesis 

generation. This facilitates the docking process by defining a set of constraints that can be 

quantified in terms of how many and which pharmacophoric points can be matched by a 

ligand or a library of compounds. 

 

A Receptor-based pharmacophore can be defined as an arrangement in three-dimensional 

space of several (typically three to six) features considered to be relevant for specific 

binding50. These features can be specific such as hydrogen bond donor or acceptor, or 

aromatic moiety. These physicochemical attributes can be mapped on a cavity surface 

using different approaches based on surface conservation or energetic contouring with 

interacting molecular probes51. However, the challenge is to pinpoint the specific 

electrostatic or hydrophobic interactions complementary to the residues lining the active 

site. To some extent, probe-based methods have found success in defining the polar and 
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hydrophobic regions within the cavity52. The knowledge-based approach of assigning 

interaction sites have also been implemented (LUDI) where statistical analysis of 

hydrogen bond patterns and geometries in crystal packing is taken into account by 

generating an ensemble of interaction sites distributed over the region of acceptable 

geometries53. Similarly diffused/non-directional interactions such as hydrophobic 

interactions due to aliphatic or aromatic moiety can be assigned after study of its 

distribution pattern. This approach has the advantage that it is purely geometrical and 

therefore avoids costly calculations of potential energy functions53. 

  

While geometric matching and pinpointing of specific interactions between ligand and 

receptor atoms provides a very intuitive picture, it is clear from basic physical principles 

and from measurements that the energetics involved in the thermodynamic association 

and dissociation processes determines the binding affinity of the ligand, which, after all, 

is one of the key properties of a molecule in the drug discovery process. Pharmacophores 

do not encode these energetic aspects, but do provide a rough sketch of the binding 

pocket. The potential binding pockets are considered as binding sites if a small molecule 

can bind in pocket such that it can form sufficient energetically favorable interactions 

with the protein. Numerous other techniques and approaches have been developed to 

calculate binding energies28,54. This has important implications in understanding of the 

nature of protein interactions, identifying the suitability of sites as drug targets and for 

identifying critical regions for docking and structure-based drug design.  

 

 



www.manaraa.com

   

 16

1.2.3 Docking 

Docking calculations are needed to predict how new hypothetical or existing compounds 

will bind to the protein. Given the three dimensional structure of a receptor, known 

ligands can be docked to examine how they fit so that a protein ligand complex can be 

characterized in detail and modifications that improve binding can be suggested. The 

docking methodology has found widespread applications in drug discovery since large 

number of small molecules can be virtually screened by docking compounds from a 

database into a receptor structure in an attempt to find novel compounds39,55.  

 

The docking approach can be thought of as a three step process. The first step involves 

characterization of binding site. This step identifies and delineates the binding site for 

docking. It is a critical step as it defines and sets the constraints to position the ligand in 

the defined binding region.  The second step is to correctly position a set of ligands in the 

binding site based on the defined constraints. This step involves exploration of the 

configurational and conformational space for the interaction between target and the 

ligand. This step tries to correctly predict and identify the most favorable binding mode 

of the ligand into the target active site. The third step is an elaborate process of 

energetically assessing the docked position of ligand and scoring and ranking the 

proposed protein-ligand complex.  

 

Although the first step of site characterization is crucial for docking, it is generally not 

considered to be a part of docking methodology as it has grown and developed as a 

separate field of study.  This broadly leaves the docking approach as a two component 
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approach of ‘search’ and ‘scoring’. Several different approaches have been developed for 

investigating the accessible conformational space of a ligand56,57. One of the earlier 

approaches involved was systematic search58. However, the search becomes more and 

more complex with the ligand flexibility as the number of degree of freedom of the 

ligand molecule increases. Such an approach was implemented in methods where ligand 

and binding pocket were considered to be rigid and ligand was fitted using shape 

complementarity via point complementarity or distance geometry approaches59,60. In such 

docking methods, the shape of both the receptor site and the ligand is investigated based 

on shape and pharmacophoric points. Orientations are generated through various 

alignment procedures in order to maximize the pharmacophoric constraints and shape 

complementarity. However, it is not feasible to exhaustively explore the available 

conformational space and a right balance between speed and accuracy has to be made so 

that as many binding modes as possible are explored. Fragment-based approaches that 

work by either incremental construction of ligand in the binding pocket or just by placing 

and joining the fragment circumvent the problem of combinatorial explosion of generated 

conformers in the previous approaches61-63.  

 

Stochastic methods involving random sampling of conformational space of ligand in the 

binding pocket have also been widely applied in many docking algorithms55. Algorithms 

using Monte Carlo sampling coupled with Metropolis criterion are applied to 

exhaustively search the conformational space64. Simulated annealing protocol combined 

with grid-based energy evaluation can be coupled with this approach to overcome high 

conformational energy barrier in conformational sampling65. Another such stochastic 
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approach that has been successfully implemented in docking algorithm is the genetic 

algorithm based sampling of conformational space66-68. In this approach, multi-

conformers referred as chromosomes are evaluated, crossed and mutated and the best 

possible solution is kept based on the fitness function. The solution is represented by the 

best scored conformation of the total conformers after a set number of generations. 

GOLD (Genetic Optimization for Ligand Docking) is the most applied and well known 

for flexible molecular docking69.  

 

In contrast to these systematic and stochastic approaches, molecular dynamics-based and 

heuristic tabu searches have been implemented to explore the sample space56,70,71. 

However, molecular dynamics is computationally expensive which has restricted its use 

in docking. To circumvent this exhaustive sampling, tabu search approaches were 

adopted where a list of already explored conformations were maintained and only 

unexplored spaces were sampled72. This avoids reinvestigating the space already sampled 

by associating the sampled conformations with a degree of penalty. Apart from these 

deterministic approaches hybrid consensus approaches have also been implemented that 

combine features from other two approaches73,74. Although these approaches can 

exhaustively and successfully sample and generate all the possible conformations within 

the active site, the success of any docking program depends on how well it can reproduce 

the experimental binding mode of ligand within the cavity. The idea is to successfully 

predict the most energetically favorable pose out of thousands of sampled conformers. 
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1.2.4 Scoring 

The success of whole molecule docking, de novo construction of molecules into a target 

site, or screening large virtual combinatorial libraries is ultimately dependent on the 

accuracy of the scoring function that ranks the compounds. Ligand orientations can be 

evaluated on the fly as the ligand or fragment is positioned within the cavity or all the 

generated poses can be scored in the end. The scoring methods that are used in high-

throughput settings dealing with thousands of diverse compounds can be evaluated by 

how well the corresponding relative binding affinities can be predicted. This need has led 

to the development of a wide variety of methods, which can be subdivided in four major 

approaches: force field-based methods, semi-empirical approaches, empirical scoring 

methods, knowledge-based potentials and lastly consensus scoring functions that are 

combination of multiple scoring functions55,75.  

 

Force field-based scoring methods generally use a molecular mechanics force field, 

which contains terms for intramolecular forces like bond, angle and dihedral terms 

between the atoms that are bonded to each other plus energy terms for intermolecular 

forces that describes the forces between non-bonded atoms such as van der Waals and 

Coulombic terms. There are a number of widely applied and successful molecular 

mechanics-based scoring functions76-79. Due to their simplicity, they are widely applied 

and suitable for use in virtual screening. Though faster and simpler, they are ideally not 

meant for simulating biomolecular interactions as these methods were developed for 

calculating gas phase enthalpy of binding. However, this class of scoring approach is 
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associated with many drawbacks and does not account for hydrophobic interactions, 

solvation and entropic effects. 

 

Empirical scoring methods offer an alternative approach to pure molecular mechanics-

based force field methods for scoring80. The underlying idea is that the binding free 

energy of a non-covalent protein-ligand complex can be factorized into a sum of 

localized and chemically intuitive interactions. The terms accounting for different 

contributions such as hydrogen bonds, hydrophobic interactions, entropic effects are 

normalized by weighting factors derived from regression analysis of the data from 

training sets comprised of well characterized protein-ligand complexes. Based on the 

assumption of additivity, the binding affinity is estimated as a sum of interactions 

multiplied by weighting factors and solved by equation of the type (1). 

 

ΔGbinding ≈ ∑ ΔGifi (rl, rp)                                                       (1) 

 

Where fi is a simple geometrical function of the ligand (rl) and receptor (rp) coordinates55. 

However, accuracy of these methods depends upon the quality of the experimental 

binding data and crystallographic structural data of the training set. 

 

Semi-empirical scoring functions, however, combine the above two approaches and 

incorporates empirical or empirically calibrated energetic terms for interactions that 

cannot be computed by pure molecular mechanics-based methods.  Thus, implicit binding 

energy terms such as hydrogen bonding, solvent effects, hydrophobicity and entropic 
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terms can be included in the scoring functions.  In contrast to force field-based scoring 

functions, semi-empirical scoring terms can more accurately estimate the binding energy 

by including entropic and solvation effects that are known to significantly affect 

biological interactions in aqueous medium81-84. 

 

Knowledge-based scoring functions85 are rule-based scoring functions where rules are 

derived from the analysis of structural data of known and well characterized receptor-

ligand interactions. Exponential growth and availability of structural data on protein-

ligand complexes has allowed deriving and formulating set of rules based on the 

frequency of interactions.  Scoring functions of this type try to capture the knowledge 

about protein-ligand binding that is implicitly stored in the protein data bank by means of 

statistical analysis of structural data. The potentials are obtained by statistical analysis of 

atom-pairing frequencies observed in crystal structures of protein-ligand complexes86. 

However, the accuracy of knowledge-based scoring function depends on the quality of 

experimental data, as it incorporates structural knowledge without referring to 

inconsistency in experimental and structural data. 

 

Though several approaches have been implemented in deriving a robust scoring function, 

none of the scoring functions are ideal, as a variety of approximations are made to make a 

compromise between speed and accuracy. Taking into consideration the limitations of a 

single scoring function, the concept of consensus scoring evolved based on the premise 

that combination of different scoring functions would probably lead to a better 

performance by overcoming inherent weaknesses in individual functions87. A consensus 
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between a set of scoring functions can be reached either by averaging the rank assigned 

by each scoring function or averaging the score value calculated by different functions. 

Although a number of scoring functions as well as their combinations have been 

implemented, ideally, the best scoring function should be able to discriminate between 

native and non-native binding modes and be able to calculate the actual free energy of 

binding.  

 

1.2.5 Free Energy Prediction 

Predicting the structure and binding affinity of ligand-receptor complex is a challenging 

process and forms an integral part of structure-based drug design protocol. Ligand 

binding is governed by kinetic and thermodynamic principles. The quantity of interest in 

determining binding constants is the free energy difference between the complexed and 

uncomplexed state.  

 

ΔGbinding  = ΔGcomplex – ΔGfree                                             (2) 

 

The free energy is measured with the Gibbs free energy (G) of the system. The standard 

free energy change of the ligand-receptor binding process can be expressed as ΔGº. The 

most common measurement for ΔG is through the equilibrium constant for the complex.  

 

ΔGbinding = -RT ln Keq = RT ln Kd                                        (3) 
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Where R is the gas constant, T is the absolute temperature in Kelvin. Since the 

equilibrium constant (Keq) or dissociation constant (Kd) is a direct measure of ligand 

affinity; calculation of ΔG, the free energy of binding is of great interest in drug design. 

Computationally, the goal is to estimate binding free energy, ΔGbinding, which can be 

directly related to the experimentally measured association constant (Ka). A useful way to 

consider the binding free energy is in terms of the changes in enthalpy and entropy on 

formation of complex, as expressed by the following equation: 

 

             ΔGbinding = ΔH- TΔS                                                   (4) 

 

 Enthalpic (ΔH) and entropic (ΔS) factors that contribute to ligand binding include the 

hydrophobic effect, van der Waal and dispersion interactions, hydrogen bonding, other 

electrostatic interactions and solvation effects.  

 

During the complex formation, both receptor binding site and the ligand become partially 

desolvated and there is structural reorganization of solvent molecules between the 

receptor and ligand. In a majority of cases the solvent molecules are displaced between 

receptor and ligand thereby replacing existing hydrogen bonds between solvent and 

receptor or ligand. Also there is a change in entropy on binding as it is accompanied by 

change in translational and rotational degrees of freedom for the ligand, receptor and 

solvent molecules. In order to calculate the binding energy accurately, the scoring 

function should include all the enthalpic and entropic terms. So far, there are a wide 
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variety of different techniques available for predicting the free energy of protein-ligand 

binding, but most scoring functions do not include all of these terms27,28,54,88.  

 

Most of the functions are based on the assumption that different contributions to free 

energy of binding are additive and can be calculated separately.  The free energy of 

binding can be partitioned and calculated as an additive contribution from different parts. 

The “master equation” can be written as: 

 

   ΔGbinding = ΔGsolvent + ΔGconf  + ΔGint + ΔGmotion                                      (5) 

 

Where, ΔGsolvent is the free energy contributions from the solvation or hydration free 

energy, ΔGconf is due to conformational changes in the protein and ligand, ΔGint is free 

energy due to specific protein-ligand complex as a result of their proximity and ΔGmotion 

is free energy as a function of motion of receptor and ligand89.   

 

Ideally, all the energy contributions should be ensemble averages as the complex, the free 

protein, and the ligand are dynamic entities and these free energies can be calculated by 

integrating over all possible configurations of the protein, ligand and solvent system. Free 

energy perturbation methods allow direct calculations of certain differences in free 

energies90. The basic idea of free energy perturbation is derived from statistical 

mechanics as it relates the free energy of a system and ensemble average of an energy 

function that describes the system. However, free energy perturbation still requires 

relatively large amounts of computer time, provides very limited conformational 
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searching and remains technically difficult. Consequently, most approaches use 

approximate methods54,89. 

 

The force-fields used for calculations of free energy and intermolecular interactions 

assume that steric and electrostatic forces are sufficient to account for the observed 

biological interactions. However, these alone are never sufficient in accurate prediction 

of biomolecular interactions as they do not always include solvation/desolvation effects. 

The entropic contributions to binding are much less well-defined and often poorly 

quantitated or even ignored in most of the cases. Most approaches sum up these 

interactions separately as distinct enthalpic and entropic contributions, whereas, in 

reality, the ligand-protein recognition is a concerted event and thermodynamic quantities 

cannot be just simply summed.  

 

1.3 HINT Model 

This work focuses on an alternative force field-based on the experimental information 

from log Po/w (partitioning coefficient for water/1-octanol). Since log Po/w is an 

experimentally derived thermodynamic quantity, it directly correlates with the free 

energy of interaction and encodes all non-covalent interactions in the biological 

environment as well as solvent effects and entropy91,92. The HINT model describes 

specific atom–atom interactions between two molecules, using the equation:  

 

HTOT = ∑∑ bij = ∑∑ (aiSi ajSjRijTij + rij)                  (6) 
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where a is the hydrophobic atom constant (derived from log Po/w), S is the solvent 

accessible surface area, T is a function that differentiates polar – polar interactions (acid – 

acid, acid – base or base – base), and R and r are functions of the distance between atoms 

i and j . The interaction score bij describes the specific atom–atom interaction between 

atoms i and j, and HTOT represents the total HINT interaction score. The HINT model is 

based on the assumption that each bij approximates a partial δg value for a specific atom–

atom interaction, thus the total HINT score, which is the cumulative sum of all the atom–

atom interactions, correlates with ΔGinteraction, i.e., ΔG = ∑(δG). The HINT paradigm has 

been extensively applied for predicting the free energy of binding for protein –ligand and 

other systems91,93-95.  

 

1.3.1 HINT Hypothesis  

Hydropathic interactions comprising of polar and hydrophobic interactions form the very 

foundation of intra and intermolecular interactions. Although polar interactions can be 

accurately quantified using quantum chemistry methods, hydrophobic interactions are 

hard to quantify. The thermodynamic factors which give rise to the hydrophobic effect 

are complex and still incompletely understood. The hydrophobic effect is considered to 

be the major driving force in protein folding resulting in the burial of the hydrophobic 

residues in the core of the protein. It is exemplified by the fact that oil and water do not 

mix and oil droplets coalesce together to form a separate layer. The Hydrophobic effect, 

which is considered to be mainly entropy driven, is also responsible for protein-ligand 

interaction and bio-macromolecular association. However, commonly used molecular 

mechanics-based forcefields do not include terms for quantifying entropic energy. There 
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are, however, computationally intensive free energy perturbation methods that are able to 

accurately calculate free energy of binding90,96.  

 

The HINT forcefield is based on empirically-derived Log Po/w values that intuitively 

estimate free energy of binding, ΔG96. Log Po/w is a thermodynamic quantity that encodes 

both enthalpic and entropic term. These include hydrogen-bonding, acid-base 

interactions, coulombic attractions as well as hydrophobic interactions. All of these are 

related to solvent partitioning phenomena and the free energy of transfer of a compound 

from one reference state, such as an organic solution, into water, involves free energy 

change comprised of enthalpic and entropic contributions. The two phases, i.e., octanol 

and water, correspond to hydrophobic and polar residues and also are analogous to the 

hydrophobic microenvironment inside the binding cavity and solvent system. Since the 

dissolution of any compound in a mixed solvent system involves the same fundamental 

processes as biomolecular interactions within or between proteins and ligands, HINT 

derives the information from bulk molecular solvent partitioning to discrete interactions 

between the atoms. The program calculates empirical atom-based hydropathic parameters 

(hydropathic atom constant) that encode all significant intermolecular and intramolecular 

non-covalent interactions implicated in drug binding or protein folding. The hydropathic 

atom constant forms the core of HINT paradigm. 

 

The hydrophobic atom constant, a, is the key parameter in the HINT model. The atom 

constant, a, is calculated using an adaptation of the hydrophobic fragment constant 

approach of Hansch and Leo97. However, contrary to the Hansch and Leo approach, that 
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calculates the total solvent partition constant for a molecule by summing up the fragment 

constants, HINT backtracks from this point and distributes and assign atom constant to 

each atom of a fragment or molecule. Facilitating this are two databases for small 

molecules and bio-macromolecules, with re-parameterized force-field atom types, 

modified factors for bond, ring, and branched chain fragment data. The molecular 

database is used for structure/connection based calculation of Log P. The database 

contains a data tree of partition information and a bare hydrophobic atom constant for 

each atom type.  These bare hydrophobic atom constant values can be modified by a 

variety of factors specific to the molecular environment. A series of simple rules based on 

atom connectivity and proximity to other atoms identify and apply these modification 

factors to atom constants. In case of bio-macromolecules, dictionary-based calculations 

are carried out for log P depending upon the acidic, basic or neutral solvent condition 

where the modification rules are implicitly applied. Hydrogen atoms can be treated 

explicitly to model interactions more accurately. These modification factors characterize 

actual biophysical phenomena related to the molecular structure and properties. These 

hydrophobic atom constants along with modification factors encode the thermodynamic 

information and reveal the potential type and strength of interaction that the atom may 

encounter. Coulombic, hydrogen bonding, dispersion as well as hydrophobic effects may 

be extracted from the hydrophobic atom constant by examination of the sign and 

magnitude of the constant.  
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1.3.2 HINT Calculation 

The basic principle and application of HINT methodology is calculation of experimental, 

information-rich hydropathic atom constants and calculation of atom-atom interactions in 

a bio-molecular system. The partition constant LogP is a thermodynamic parameter, 

which due to its unprocessed and unbiased experimental nature, contains interaction 

information specific to the biological environment as well as solvent effects and 

entropy98,99. HINT was created specifically to calculate all non-covalent interactions. In 

practice, the conceptually simple HINT model scores each atom–atom interaction within 

or between biological molecules according to equation (6). As mentioned bij is the 

interaction score between atoms i and j, a is the hydrophobic atom constant, S is the 

solvent accessible surface area (H2O probe), Tij is a logic function describing acid-acid, 

acid-base and base-base interaction, and Rij and rij are functions of the distance between 

atoms i and j (i.e. r). Generally the hydropathic-dependent function, Rij, is the simple 

exponential e–r and rij is an implementation of the Lennard- Jones potential function. The 

rij term is mostly a penalty function to prevent van der Waals violations. The double sum, 

∑∑bij, is the total interaction score for the system. The HINT convention is that favorable 

interactions are scored with bij > 0 and unfavorable interactions are scored with bij < 0. 

The logic function Tij returns a value of 1 or –1 depending on the character of the 

interacting polar atoms (i.e. a < 0): there are three possibilities: acid–acid, acid–base, or 

base–base; only acid–base is scored favourably. Since polar moieties are markedly 

differentiated from hydrophobic moieties, the explicit interactions between a ligand and 

its receptor can be predicted. Besides this, the general microenvironment of the binding 

site can also be characterized. Likewise, and more exciting, complementary binding 
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points within the binding pocket can also be derived, giving a deep insight as to what an 

ideal ligand would look like. The HINT forcefield and its free energy scoring functions 

have been extensively applied and validated and have shown to be useful in a wide 

variety of biomolecular simulations93,100-102. To further extend the capability and 

applicability of HINT program, all the algorithms have been incorporated in a toolkit103.     

 

1.4   Amalgamation of Experimental and Theoretical 

Approaches: Scope and Limitations 

The field of molecular modeling lies at the interface of experimental and theoretical 

approaches. Computational modeling techniques attempt to simulate an abstract model of 

a particular system and are often plagued by very drastic approximations. The problem is 

further compounded by inherent experimental errors and artifacts. While, structural data 

available from x-ray crystallography and NMR has undeniably encouraged the efforts 

towards understanding the structure and functions of protein, only partial agreement 

between experimental and theoretical data has been observed based on these crystal 

structures. Often the issue raised is how representative is a single crystal structure in a 

structure-based drug design project? In addition to the obvious correlation between 

crystal structure resolution and accuracy, there are other considerations such as the 

reliability of place water molecules and thermal motion of unconstrained residues. By 

and large it has been difficult to correlate solution binding data, crystallographic 

structural data with theoretical calculations. The main reason for this inconsistency could 

be attributed to inherent experimental constraints. The binding data is generally not of a 
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quality to enable accurate quantitative comparisons. Some spectroscopic experiments can 

give direct measurement of free energy while calorimetric experiments just yields the 

enthalpic or heat energy changes of system. In addition to this, ∆G computed via 

sophisticated simulations often do not correlate well with the experimental binding 

measurements as quite often computational chemists involved in pharmaceutical research 

interchangeably use Ki and IC50 with Kd data in calculation of free energy relationships. It 

is commonly becoming a practice in drug discovery community to have assays that 

generate IC50 values rather than equilibrium constants. These approximations severely 

undermine the accuracy of models and should be used with discretion.  

 

One of the main aims in structure based drug design is explaining the binding interactions 

between a drug and its target. This is often achieved by virtual screening, more 

specifically, identifying a lead molecule out of thousands of molecules by docking and 

predicting affinity against a target protein. There are number of issues that currently are 

not adequately addressed. For example, in such calculations enthalpic contributions are 

often estimated by theoretical methods, knowledge-based potential functions, or 

parameters derived from experimental data. The force-fields used for calculations of free 

energy and intermolecular interactions assume that steric and electrostatic forces are 

sufficient to account for the observed biological interactions. However, these alone are 

never sufficient in accurate prediction of biomolecular interactions as they do not always 

include solvation/desolvation effects. The phenomenon of solvation/desolvation within 

the protein active site resulting in hydrophobic interactions has been particularly difficult 

to model computationally. Besides this, appropriate consideration of ionization and 
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tautomerization state of ligand and protein is also very important. Assumption of 

structural rigidity as an approximation may have severe entropic repercussions. In 

addition, binding may lead to protein adaptability and additional conformational changes 

that are not normally considered. These entropic contributions to binding are much less 

well-defined and often poorly quantitated or even ignored in many cases. Most 

approaches sum up these interactions separately as distinct enthalpic and entropic 

contributions, whereas, in reality, the ligand-protein recognition is a concerted event and 

thermodynamic quantities cannot be just simply summed. The interaction energies 

calculated without entropic contributions are not always expected to correlate well with 

the measured free energies of binding. Virtual screening has limited accuracy in 

exchange for a list of few promising candidates for further evaluation.  

 

Pioneering studies in free energy calculation over the past few years have made 

significant progress towards this goal. Among the several methods available to calculate 

free energy, complex and time consuming molecular dynamics simulations with explicit 

water have been shown to correlate with free energy. Free energy perturbation (FEP) 

calculations based on statistical mechanics relates the free energy of a system calculating 

the ensemble averages and treating solvent molecules and ions explicitly. However, 

calculation of free energy using molecular dynamics simulation is plagued by errors from 

a variety of sources. Statistical errors arise from the limited sampling of configurations 

accompanied by errors arising from the imperfect equilibration of the system. Multiple 

levels of time and uncertainty are compounded for complex biomolecular systems with 

inclusion of solvents and counter ions.  However, the size of the system makes 



www.manaraa.com

   

 33

approaches of this sort computationally expensive and so simplified models are generally 

applied.  

 

Though computational modeling techniques hold a great promise for future progress in 

drug discovery and development it is still an evolving technology and has number of 

limitations. However the tools and techniques should be used with great cautions. Any 

theoretical model generated should be validated with experimental methods. 

  

1.5 Research Plan  

A new methodology based on HINT paradigm94 is applied to design novel inhibitors of 

tubulin protein and predict the binding mode of the protein-ligand complexes. The 

research utilizes the biological data, correlated with structure, to optimize the current (and 

succeeding) drug leads to design more effective candidate compounds with improved 

efficacy and minimal toxicity.   The study also aims towards developing novel molecular 

modeling tools to design clinically viable molecules. 

 

Given the utility of microtubule targeting as a strategy in the treatment of malignancy, the 

design and development of a new and clinically active class of microtubule-targeting 

compounds is highly desired. Pyrrole containing molecules derived from nature have 

proven to be particularly useful as lead compounds for drug development104,105. Highly 

functionalized pyrroles have previously been demonstrated to have potent cytotoxicity 

against a variety of human tumors with activity expressed at nM and µM concentrations 

in human breast tumor cell lines106,107. Collaborators in this research have recently 
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developed a series of brominated pyrroles, whose structure suggests that they might 

interfere with tubulin function (Figure 1a, b). Both cellular studies with one of the 

compounds, JG-03-14 (3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic 

acid ethyl ester) and molecular modeling analysis tend to support the contention that 

these compounds function as microtubule poisons108. As described later, the development 

of additional synthetic or semi-synthetic pyrrole derivatives is greatly facilitated due to 

their relative ease of synthesis, which, in turn, facilitates manipulation of the molecular 

properties in adding and removing a broad range of functional groups109. Consequently, 

this research proposes to refine and develop pyrrole-containing alkaloids as new 

chemotherapeutic agents for the treatment of breast cancer. 

 

1.5.1 Preliminary Research/Data 

 
In the initial studies carried out by our collaborators, several substituted pyrroles (Figure 

1b) were evaluated for their inhibitory activity on the growth of MCF-7 breast tumor 

cells108.  The studies demonstrated that the highest degree of anti-proliferative activity 

was expressed by JG-03-14, while a lesser degree of activity was evident for compound 

JG-05-2. The other analogs examined failed to demonstrate significant anti-proliferative 

activity at concentrations up to 500 nM.   
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Figure 1: a) Highly functionalized pyrrole scaffold. b) Structure of substituted pyrroles. 
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These observations provided insight into the structural requirements for the growth 

inhibitory activity/cytotoxicity of this class of agents and offer significant opportunity for 

structural alterations, which could lead to an improved drug candidate. All the subsequent 

experimental studies conducted by our collaborators suggested that JG-03-14 promoted 

extensive cell death during the initial period of exposure. These observations indicated 

that JG-03-14 abrogates breast tumor cell growth and survival through both the 

promotion of autophagic cell death and induction of a permanent growth arrested state.  

COMPARE analysis across NCI cancer cell line panel evaluated similar activity profile 

of colchicine and JG-03-14 and further corroborated mechanism of action of JG-03-14 to 

be similar to that of colchicine. Thus, there is strong evidence that this class of 

compounds interferes with the microtubule function. The effects of JG-03-14 along with 

the two positive controls, combretastatin A-4 and thiocolchicine, on tubulin assembly 

were studied (Table 1). All these agents inhibited the assembly of tubulin. 

  

Examination of the initial docking model in detail illustrates (Figure 2), the pocket shape 

and size, as indicated by the green translucent surface. The occupancy of the JG-03-14 

compound in this pocket is shown by the dot surface (color coded by brown=lipophilic, 

green=polar), regions of the site that do not have optimum interactions and consequently, 

locations at which molecular modifications of the lead compound might be effective, can 

be seen.  For example, the left region of the pocket, which is quite hydrophobic, 

effectively accommodates the two methoxy group substituents to the aromatic ring of JG-

03-14, but may be able to tolerate more steric bulk.    



www.manaraa.com

   

 37

 

 

Table 1: JG-03-14 inhibits tubulin assembly and [3H]colchicine binding to tubulin.  
The effects of JG-03-14, and the positive controls combretastatin A-4 and thiocolchicine, 
on tubulin assembly were studied.  All these agents inhibited the assembly of tubulin and 
the EC50 values for inhibition (at 10 µM tubulin) were calculated. The effects of these 
compounds on 5 µM [3H]colchicine binding to 1 µM tubulin were determined. ND =not 
determined.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

% Inhibition of binding by inhibitor at 
Inhibition of tubulin assembly (EC50 in μM) 

1 μM 5 μM 
JG-03-14 1.5 ± 0.2 49 ± 3  84 ± 0.6 
Combretastatin A-4 1.3 ± 0.1 83 ± 2  97 ± 2 
Thiocolchicine 1.0 ± 0.1 ND  67 ± 0.07 
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Figure 2:   Difference between pocket (green surface) and JG-03-14 structure volumes 
indicates regions of interest for designing new active analogs. 
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This model also suggests that the pyrrole substituent α to the nitrogen [C(=O)OCH2CH3 

in JG-03-14] can be optimized to make better interactions with the residues at the 

entrance to the pocket. Highly selective novel analogs with minimal toxicity can be 

designed using the proposed HINT-based de novo design methodology. The primary aim 

of this research is to design a library of highly selective pyrrole-based analogues.  The 

fragment-based approach can, therefore, be considered as a good working hypothesis for 

rationally designing novel analogs since the individual building blocks have to be linked 

in order to be a meaningful inhibitor. If the individual building blocks can be chemically 

linked easily in a chemical fashion, the approach has the advantage that the building 

blocks can be synthesized separately and linked in the final stage of the synthesis.   

 

A very extensive library of compounds for the synthesis and evaluation of analogs of JG-

03-14 can be created using fragment-based methodology.   The rationale is to select the 

compounds which have demonstrated interesting bioactivity, and vary the A, B, X, Y and 

Z groups (Figure 1a) in a logical manner based on modeling studies and the use of 

standard QSAR considerations (lipophilic character, electronic effects and steric effects).  

Each of the target molecules can then be subsequently subjected to docking and QSAR 

evaluation prior to the synthesis.  Structure activity information from other known agents, 

which have similar binding properties, can also be incorporated into the selection of the 

indicated target molecules.  This study also appreciates the fact that the most active 

compound found may not be the ideal candidate due to toxicity effects on normal cells. It 
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serves little purpose for a drug to kill tumor cells if overall toxicity to host tissue is high 

(i.e., the drug has low selectivity and/or a narrow therapeutic index. One of the objectives 

of this research was to design novel analogues using structure-based/ligand based 

computational methods. This is only the starting point for one of several approaches to be 

explored as predictive tools for molecular design. Therefore, this methodology will allow 

generation of a large family of strong candidates, on which, further xenograft and clinical 

studies can be carried out.  

 

Another such attempt was carried out to design and develop novel stilbene analogs that 

also target the microtubules at the colchicine site and act as anti-leukemic agents. A 

series of novel stilbene derivatives have been synthesized and studied with the main goal 

to investigate SAR of the stilbene analogs, as well as to improve its water solubility, a 

potentially negative aspect of this molecule that could be a serious hindrance in the pre-

clinical development. We attempted to optimize stilbene 5C using computer-based drug 

design and synthesize derivatives with benzimidazole or indole group. Derivatives with 

good cytotoxic activity, in particular, the derivatives 5C and 6C (Figure 3) were obtained 

and the study gave rise to two novel leads for further investigation. Alternative approach 

was also adopted to make prodrugs of stilbene 5C. A morpholino-carbamate derivative, 

prodrug of 5C, has a very good solubility in water, and is active in suppressing growth of 

tumor cells at a concentration of 5000 nM, which is a concentration 100 times higher than 

the parent stilbene 5C.  
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 Figure 3: Stilbene 5C and 6C. 
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 These data suggest that stilbene analogs could be a good candidate for further pre-

clinical and clinical development as a new anti-tumor agent for cancer therapy. 

 

A second synergistic, goal of this research was to design and develop novel molecular 

modeling software tools that would de novo identify and characterize the binding site and 

design analogs within the binding site. The available crystal structure of tubulin protein 

has a low resolution of 3.58 Å, undermining the ability to design highly selective ligands.  

Target-based generation of lead compounds requires that the three-dimensional structure 

of the ligand binding site be known as accurately as possible. Identification and 

characterization of active sites is imperative in the study of protein structure, particularly 

for the design of molecules that interfere with its function and modulate activity. 

However, in a low resolution crystal structure model, knowledge about the correct 

orientation of side chains is limited by ambiguities in position and orientation because the 

experimental electron density envelopes are generally featureless. Through the 

computational modeling studies, it was intended to elucidate the binding process by 

better characterizing the binding site.  

 

This involved analyzing the hydropathic character of the binding site and generating 

synthetically viable functionalities on parent molecules to exactly complement the 

binding features in the active site. This feature effectively facilitated designing clinically 

viable drug candidate with minimal toxicity. The methodology can also be extended to 

other systems and may find extensive applications in de novo drug design projects. These 
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efforts are expected to give rise to a new class of selective and potent anti-tumor drugs 

for use in combination chemotherapy.   

 

1.5.2 Expectations, Interpretation and Impact 

A key success criterion for this research is to productively use the biological cytotoxicity 

data to design new and more potent analogs. Development and biological evaluation of 

diverse set of analogs will be accomplished by the collaborators. The synthetic 

methodology used by our collaborators is very flexible and rapid, making it possible to 

synthesize and test many compounds designed computationally and thus, allow 

significant diversity in pyrrole substituents. This research plans appropriate SAR 

(Structure Activity Relationship) guided structural alterations on the lead compounds to 

optimize the desired bioactivity and minimize toxicity. This will involve structural 

changes, which will probe steric, electronic and lipophilic character of the parent 

molecule. Once the targeted compounds are prepared, sensitivity will be compared in 

breast tumor cells and normal cells.  

 

Favorable findings in terms of new compounds based on this research design would 

guide the synthetic efforts to develop analogs with a higher degree of selectivity.  The 

success of this research project depends on the effectiveness of the multidisciplinary 

collaboration. For example, cytotoxicity studies will allow molecular models and QSAR 

approaches to be refined, which will then suggest the next round of pyrrole analogs to be 

synthesized and biologically evaluated with the ultimate goal of generating a significant 

clinical candidate.  
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The iterative cycles of modeling synthesis testing modeling, etc. will be 

continuously monitored to improve the models and consequently, the predictions of the 

compound activities. 
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CHAPTER 2 
 

Docking and Hydropathic Scoring of Polysubstituted Pyrrole 

Compounds with Anti-Tubulin Activity 
 
 

2.0 Abstract  

Compounds that bind at the colchicine site of tubulin have drawn considerable attention 

with studies indicating that these agents suppress microtubule dynamics and inhibit 

tubulin polymerization. Data for eighteen polysubstituted pyrrole compounds are 

reported, including antiproliferative activity against human MDA-MB-435 cells and 

calculated free energies of binding following docking the compounds into models of αβ-

tubulin.  These docking calculations coupled with HINT interaction analyses are able to 

represent the complex structures and the binding modes of inhibitors such that calculated 

and measured free energies of binding correlate with an r2 of 0.76.  Structural analysis of 

the binding pocket identifies important intermolecular contacts that mediate binding. As 

seen experimentally, the complex with JG-03-14 (3,5-dibromo-4-(3,4-dimethoxyphenyl)-

1H-pyrrole-2-carboxylic acid ethyl ester) is the most stable.  These results illuminate the 

binding process and should be valuable in the design of new pyrrole-based colchicine site 

inhibitors as these compounds have very accessible syntheses. 
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2.1 Introduction 

A large number of targets are under exploration for chemotherapeutic treatments for 

cancer.  In the past several years, based on the efficacy and commercial successes of 

paclitaxel and the vinca alkaloids, there have been major efforts to design inhibitors that 

bind and interfere with the function of microtubules.  Microtubules are essential elements 

of the cytoskeleton and extremely important in mitosis and cell division.  Colchicine, the 

first drug known to bind to the tubulin protein110,111, inhibits microtubule formation and at 

high concentrations causes loss of cellular microtubules.  In contrast, paclitaxel and its 

analogues actually promote microtubule polymer formation112-114, albeit by acting at a 

different site on tubulin than colchicine.  A variety of small molecules with diverse 

molecular scaffolds have been shown to bind tubulin at the colchicine site115-118.  One 

class of these compounds receiving particular attention has been that based on the natural 

product combretastatin A-4 discovered by Pettit119,120.  Despite some successes, the 

discovery of new, more efficacious inhibitors is becoming increasingly important because 

of multi-drug resistance to tubulin-binding antimitotic agents121.   

 

Natural products containing pyrrole have diverse and interesting biological activities, and 

have proven to be particularly useful as lead compounds for drug development105,109,122. 

As part of long-term program to develop vinylogous iminum salt-based syntheses of 

natural products containing the pyrrole group, some early synthetic intermediates were 

evaluated against a panel of human and murine tumor cell lines123. Many of these 

synthetic compounds were highly active against cancer cell lines, and some inhibited 



www.manaraa.com

   

 47

DNA synthesis without binding directly to DNA124. Earlier studies also provided clues to 

the design of pyrrole analogs that might have potent antiproliferative activities and the 

ability to bind to tubulin.  

 

The marine natural product lukianol A contains a highly oxygenated 3,4-diphenylpyrrole 

motif, and it potently inhibited the growth of the human KB cancer cell line125. Banwell 

and colleagues suggested that lukianol A represented a configurationally stable hybrid of 

combretastatin A-4 and colchicine126. John Gupton from University of Richmond has 

synthesized another class of biologically interesting pyrroles, which are somewhat related 

to the pyrrolomycin natural products by virtue of their halogenated pyrrole backbone127. 

Brominated analogs of previously synthesized pyrroles were prepared, and they retained 

the cytotoxic activity exhibited by the non-brominated pyrroles128. While mechanistic 

studies indicated that two of the brominated pyrrole compounds bound directly to DNA, 

causing DNA cross-linking, the mechanisms of action of other brominated pyrrole 

analogs remained unknown. Based on the structural similarity of the compounds to 

combretastatin A-4 and Banwell’s suggestion that several pyrrole containing natural 

products represent stable hybrids of combretastatin and colchicine, the effect of 

brominated pyrroles were examined on cellular microtubules. Several of the brominated 

pyrrole analogs had microtubule depolymerizing effects. The most potent was 3,5-

dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester (JG-03-14; 

structure in Figure 4).  
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Figure 4: Substituted Pyrroles 
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It is significant to note that JG-03-14 is structurally unique among combretastatin-like 

compounds. It possesses a single phenyl group which is highly oxygenated; other 

combretastatin analogs always possess two highly oxygenated phenyl groups. The mode 

of action and the cellular effects of this compound were evaluated in detail, and it was 

found to be a potent antimitotic agent. Binding studies show that JG-03-14 binds to 

tubulin within the colchicine site. Our initial studies indicate that this compound has 

antitumor effects and it represents a promising lead for the generation of new analogs 

with important biological properties. While investigating the cytotoxic activity of 

compounds in a series of synthetic polysubstituted pyrroles (Figure 4), our interest in the 

colchicine binding site of tubulin as a putative target for computational drug design 

studies was piqued after a COMPARE129 analysis showed a correlation between one of 

the compounds (JG-03-14) and colchicine of 0.681 over the 45 cell lines that were 

assayed for both compounds. COMPARE evaluates similarities in activity profiles across 

the NCI cancer cell line panel, and has been used to elucidate modes of action for new 

anticancer agents129. COMPARE analysis and modeling studies suggest that JG-03-14 

represents a novel chemotype for the colchicine site. However, in any case, the true 

therapeutic potential of the colchicine site on tubulin has not been fully explored because 

of the lack of truly atomic level knowledge of the site.   

 

In 2000, Hamel and colleagues mapped the binding site of colchicinoids on β-tubulin130.  

Using molecular modeling and computational docking of colchicinoids into the electron 

crystallographic model of β-tubulin in protofilaments130, they found two potential binding 

sites. The first was entirely encompassed within β-tubulin with the colchicinoids forming 
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adducts with Cys 356.  The second potential site was located at the α/β interface and 

involved hydrogen bonding with Cys 241.  More recently, Nguyen and colleagues131 

developed a comprehensive pharmacophore model for structurally diverse colchicine-like 

tubulin inhibitors using a structure-based approach on the newly available α/β-

tubulin:DAMA-colchicine X-ray structure132.  This crystal structure definitively 

identified a cleft at the α/β interface as the colchicine binding site, but has a resolution of 

only 3.58 Å and thus requires considerable computational effort before models derived 

from it can be considered “all-atom”.  

 

In this chapter we report the results of docking this set of putative ligands into the 

colchicine site of tubulin to build stereochemically reasonable models.  We evaluated 

these docking models with the HINT free energy force field91 and found a good 

correlation between HINT scores and measured IC50s of cell proliferation by the 

compounds.  While the measured IC50s represent a downstream biological effect and we 

are making the pragmatic assumption that the modes of action for all compounds in this 

series are the same, these results do allow us to appropriately characterize the colchicine 

binding site and will also serve in design and validation of new compounds similar to JG-

03-14 in later stages of this research.  This is particularly relevant since these and other 

polysubstituted pyrrole compounds are synthetically accessible. 
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2.2 Materials and Methods 

2.2.1 Synthesis of Pyrrole Compounds   

The synthetic methods used to prepare the highly functionalized pyrroles and related 

derivatives depicted in Figure 4 can be found in previously reported work128,133-136. 

 

2.2.2 Antiproliferative Activity of Substituted Pyrroles against Human 

Tumor Cell Lines   

The antiproliferative effects of the compounds were evaluated in MDA-MB-435 cells 

using the SRB assay as previously described137. All the biological assays were carried out 

by Dr. Susan L. Mooberry and colleagues at SFBR. A 48 hr exposure time was used.  

The IC50 values, i.e., the concentration that causes 50% inhibition of proliferation, was 

calculated from the log dose-response curves and represents the mean of three 

independent experiments.  The effects of the compounds on cellular microtubules were 

evaluated using indirect immunofluorescence techniques.  Briefly, A-10 cells were 

exposed to the compounds for 18 hr and then the cells were fixed and microtubules 

visualized using a β-tubulin antibody and the DNA was visualized using DAPI.  The 

EC50s for microtubule depolymerization were determined using visual observation as 

previously described138. A range of concentrations was tested for each compound and the 

percent microtubule loss determined for each concentration.  The data from 3 

independent experiments were averaged and plotted as percent microtubule loss vs. 

concentration and EC50 values calculated.  
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2.2.3 Model Building   

The X-ray crystal structure (3.58 Å) of αβ-tubulin complexed with DAMA-colchicine132 

PDB code: 1SA0) was used in this study.  The stathmin-like domain and the C and D 

subunits were removed from the model.  After hydrogen atoms were added to the model, 

their positions were optimized to an energy gradient of 0.005 kcal-Å/mol with the Tripos 

force field (in Sybyl 7.1) while keeping heavy atom positions fixed.  The models for 

pyrrole analogues were constructed using the Sybyl 7.3 (www.tripos.com) suite and 

optimized similarly78.  

 

2.2.4 Docking   

Computational docking was carried out using the genetic algorithm-based ligand docking 

program GOLD 3.069.  GOLD explores ligand conformations fairly exhaustively and also 

provides limited flexibility to protein side chains with hydroxyl groups by reorienting the 

hydrogen bond donor and acceptor groups.  The GOLD scoring function is based on 

favorable conformations found in Cambridge Structural Database and on empirical 

results of weak chemical interactions139.  The active site was defined by a single solvent 

accessible point near the center of the protein active site, an approximate radius of 10 Å, 

and the GOLD cavity detection algorithm.  GOLD docking was carried out without 

constraints to get an unbiased result and to explore all possible binding modes of the 

ligands.  The tri-methoxy phenyl fragment of colchicine was used as the template for 

biasing the pose of all ligands. In this study we performed 100 GOLD genetic algorithm 

runs, as opposed to the default of 10 and early termination of ligand docking was 
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switched off.  All other parameters were the defaults.  To evaluate and validate GOLD 

performance the co-crystallized ligand DAMA-colchicine132 was extracted and docked.  

GOLD accurately reproduced the experimentally observed binding mode of DAMA-

colchicine in αβ-tubulin.  All remaining ligands were docked using the same parameters. 

 

Dockings with different/optional constraints such as enforced hydrogen bonds, 

hydrophobic regions and scaffold match were also explored.  For hydrogen bond 

constraints, docking was biased so that the ligands make hydrogen bonds with Asn258, 

Ser178, Asn101, and the backbone amides of Ala180 and Val181. For region 

hydrophobic constraints the ligand positions were constrained by defining a hydrophobic 

sphere where the tri-methoxy phenyl moiety of colchicine was positioned.  Then specific 

ligand atoms to be docked in the hydrophobic region of the active site were defined.  

Alternatively, scaffold match constraints were used to place the ligand at a specific 

position within the active site.   

 

2.2.5 Hydropathic Scoring   

The HINT (Hydropathic INTeractions) scoring function91 (version 3.11S β) was used to 

investigate the structural aspects of the interactions by analyzing and ranking the GOLD 

docking solutions.  For selection of the optimum docked conformation and to further 

differentiate the relative binding efficacy of the pyrrole ligands, interaction scores were 

calculated for each pose found by docking.  The protein and ligands were partitioned as 

distinct molecules. “Essential” hydrogen atoms, i.e., only those attached to polar atoms 

(N, O, S, P) were explicitly considered in the model and assigned HINT constants.  The 
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inferred solvent model, where each residue is partitioned based on its hydrogen count, 

was applied.  The solvent accessible surface area for the amide nitrogens of the protein 

backbone were corrected with the “+20” option. Finally, HINT scores were plotted 

against experimental binding free energies that were calculated using the standard Gibbs 

free energy equation: 

 

∆Gbinding =  - R T ln(Keq),     (7) 

 

where R is Boltzmann’s constant (1.9872 cal K-1 mol-1) and T is 298 K; Keq is an 

equilibrium binding constant, ideally KD.  In this work measured IC50 values are being 

used as approximations for equilibrium constants.   

 

2.3 Results and Discussion 

While the character of the colchicine binding site was investigated by Nguyen et al.131, 

their study was directed at deriving a generalized pharmacophore for the site and 

consequently the data set included only two polysubstituted pyrroles.  These compounds 

represent an emerging class of agents with potential activity against a variety of human 

tumors with activity expressed at nM or µM concentrations in human tumor cell 

lines108,135, but having advantages over natural products in terms of drug design and 

development.  In particular, we have been exploring a series of brominated pyrroles 

whose structure suggests that they might interfere with tubulin function.  One member of 

this series (JG-03-14, 3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic 

acid ethyl ester), for which NCI tumor panel activity had been obtained128, was suggested 
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by COMPARE129 to have an activity profile similar to colchicine.  Cellular studies with 

JG-03-14 further support the contention that these compounds function as microtubule 

poisons108.  In addition, JG-03-14 was found to promote autophagic cell death while 

retaining activity in tumor cells expressing the multidrug resistant pump108,133.  Because 

the development of additional synthetic or semi-synthetic pyrrole derivatives in this class 

is facilitated with their relatively facile syntheses, including modification of the molecule 

by adding and removing functional groups128, we have both a rather extensive collection 

of molecules in-hand (Figure 4) for building predictive molecular models and the 

potential for rational design and synthesis of many others.    

 

2.3.1 Antiproliferative Activity of Polysubstituted Pyrroles 

 Results from a number of assays have previously appeared regarding the cytotoxic 

activities of the lead compound JG-03-14108,128,140.  However, most of the compounds in 

this series have not been examined in detail.  An important component of structure-

activity relationships and/or computational activity predictions is having reproducible and 

comprehensive data for a relatively large series of compounds, even those with 

comparatively poor activity, because understanding why particular compounds are 

inactive is potentially just as valuable as data on active compounds.  Table 2 sets out the 

experimental antiproliferative assay results against human MDA-MB-435 cancer cells for 

the compounds in Figure 4.  While JG-03-14 remains the compound with the most potent 

(36 nM) activity, a few others (Table 2) have activities that are only about 7-10 fold less 

potent, thus suggesting that design of additional new compounds with desirable 

properties is possible.   
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Table 2: Experimental IC50, EC50 and docking results for polysubstituted pyrrole 
compounds. 

 

   

  

Compound Activity 
Set 

IC50 for anti-
proliferationa pIC50 ΔGbinding 

(kcal mol-1) 
HINT 
score 

HINT 
LogP 

EC50 for loss of 
microtubulesb 

JG-03-14 36 nMc 7.74 -10.14 626 2.60 490nM 

JG-03-6 312 nM 6.51 -8.87 609 3.17 >50μMf 

JG-05-1B 361 nM 6.44 -8.78 483 2.36 5.1 μM 

JG-05-3B 278 nM 6.55 -8.94 410 2.36 2.4 μM 

JG-05-5 

A 

919 nM 6.04 -8.23 559 3.02 >50 μMf 

JG-05-8 2.2 μM 5.70 -7.71 433 2.97 >50 μMf 

JG-03-12 2.6 μM 5.58 -7.61 221 4.88 >50 μMf 

JG-05-4 1.1μM 5.95 -8.12 455 3.34 7.1 μM 

JG-05-6 1.4 μM 5.85 -7.98 351 3.59 7.5 μM 

JG-03-13 5 μM 5.30 -7.23 163 1.48 >50 μMf 

JG-05-1A 1.9 μM 5.72 -7.80 508 5.62 >50 μMf 

JG-05-2A 

B 

4.2 μM 5.37 -7.33 149 6.58 >50 μM 

JG-05-7 10 μM 5.00 -6.82 152 2.43 >50 μM 

JG-05-2B 13 μM 4.89 -6.66 136 2.90 >50 μM 

JG-03-9 10 μM 5.00 -6.82 54 4.63 >50 μM 

JG-03-4 10 μM 5.00 -6.82 27 6.66 >50 μM 

JG-03-8d >10 μM 4.00 -5.45 -241 3.69 >50 μM 

JG-05-3Ad 

C 

>20 μM 3.70 -5.04 296 9.02 >50 μM 

Colchicinee 2 μM 5.70 -7.77 563 3.24 N/D 

DAMA-colchicinee 
N/A 

2 μM 5.70 -7.77 455 3.70 N/D 

aAntiproliferative activity against human MDA-MB-435 cells using the SRB assay.  
bMicrotubule depolymerizing activity for microtubule loss. 
cFrom reference 110. 
dpIC50 and ΔGbinding calculated for 10×IC50. 
eReported colchicine IC50 data was an average of values reported previously in the literature, references 
110.  For calculation purposes DAMA-colchicine was assumed to have same binding as colchicine. 
fMechanism of cytotoxicity appears to be unrelated to microtubule disrupting activity.  
N/A – not applicable; N/D – not determined. 
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Results of a second assay, microtubule depolymerizing activity EC50s for microtubule 

loss that serves as a partial check on mechanism of action, are also reported in Table 2.    

 

2.3.2 The Colchicine Binding Site 

 Binding models for each pyrrole analogue were investigated to delineate steric, 

electrostatic and hydropathic features of the colchicine binding site.  Because we have 

focused on a series of eighteen compounds with IC50s ranging over more than three  

orders of magnitude (see Table 2), we performed detailed docking studies with 

GOLD69,139 followed by free energy scoring using the HINT protocol91,102 to assess the 

binding modes. Without added constraints GOLD was found to reliably re-dock the 

crystallographic DAMA-colchicine ligand (RMSD = 0.76 Å) that was then used as the 

reference for all other docking experiments.  The HINT score for co-crystallized DAMA-

colchicine was 139; in the re-docked pose this score was 455.  However, docking of the 

pyrrole analogues with GOLD produced a mixture of orientations that could not be 

rationalized with the GOLD docking score.  Thus, as we have described in an earlier 

report96, docked poses were re-scored with HINT and we chose the highest HINT-scored 

pose for further analysis (see Table 2).  Docking poses created using a variety of 

constraints (see Methods) did not yield higher scoring models and were less interpretable 

than the “freely” bound models we are using.  These docked models of substituted 

pyrroles fit within the pharmacophoric model proposed by Nguyen et al.131, and for the 

structural features in common between the substituted pyrroles and in the Nguyen et. al. 

study, the docking models are in generally good agreement. Key is that the hydrophobic 

methoxy substituted ring of the pyrrole analogues sits at the hydrophobic center where 
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the TMP moiety of colchicine is found.  Note that, although the pyrrole compounds have 

quite similar structures and are generally positioned in the binding pocket with essentially 

the same mode, the HINT scores are very sensitive and slight positional differences are 

detectable in the scores.  This sensitivity combined with the number of compounds in the 

data set allowed us to analyze the site in considerable detail.   

 

The focus of these computational investigations was on structural aspects of the 

interactions.  The colchicine binding site lies at the interface between the α and β subunits 

of tubulin, mostly in the β subunit lined by helices 7 and 8 (see Figure 5).  The funnel-

shaped binding cavity has a volume of about 600 Å3.  Residues Tyr202β, Val238β, 

Thr239β, Cys241β, Leu242β, Leu248β, Leu252β, Leu255β, Ile378β, and Val318β form 

the narrow funnel end-like part and confer a strong hydrophobic character to this part of 

the cavity.  At the wider portion, the cavity is surrounded by Ala250β, Asp251β, 

Lys254β, Asn258β, Met259β, Ala316β, Ala317β, Thr353β and Ala354β making it 

moderately polar/moderately hydrophobic.  The open mouth end is surrounded by 

Asn101α, Thr179α, Ala180α, Val181α and Thr314β, Asn349β, Asn350β, Lys352β.  The 

crystal structure for the complex indicates that DAMA-colchicine (and presumably 

colchicine) is positioned in the pocket such that its tri-methoxyphenyl (TMP) moiety sits 

snugly in the narrow hydrophobic pocket.  Colchicine also forms hydrogen bonds with 

the backbone amides of Ala180α and Val181α.  
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Figure 5: Colchicine binding site at the interface between the α and β subunits of tubulin.  
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2.3.3 Structure-Activity Binding Relationships  

 The pyrrole analogues were clustered into three activity sets in order to study them in 

detail (see Table 2).  The first set (A) was comprised of substituted pyrroles that showed 

antiproliferative activity with sub-µM IC50s.  The second set (B) consisted of ligands with 

IC50 values ranging from 1 μM to 5 μM.  The remaining ligands, with IC50 values above 5 

μM, comprised the third set (C).  The analogs from subset A have noticeable similarity in 

their structures and are relatively simpler molecules than those in sets B and C.  For all of 

these (set A) compounds the pyrrole ring is substituted by bromines at the 3 and 5 

positions and an ethyl ester group at position 2.  The differences among this group are 

substitutions to the phenyl ring at the 4 position of pyrrole.  In these, the more potent 

compounds, most substituents to the phenyl ring, i.e., Cl, Br and methoxy, serve to make 

this portion of the ligand hydrophobic.  Figure 6A illustrates the final docked orientations 

of the high-affinity pyrroles in the colchicine site of tubulin.  The hydrophobic substituted 

phenyl ring fits snugly in the hydrophobic (narrow funnel) region of the binding pocket.  

The docked model for JG-03-14 is qualitatively similar to one reported earlier108. 

 

HINT hydropathic analysis reveals more detail concerning the forces orienting these 

ligands in the binding site.  First, hydrophobic interactions are the dominating force 

contributing towards the stability of the complexes, with additional hydrogen-bonding 

interactions anchoring the ligands in the cavity.  As listed in Table 2, the most potent-

binding ligand has the highest HINT score (vide infra), i.e., JG-03-14 interacts with the 

binding site residues forming the most stable complex.  The methoxy-substituted phenyls 

are positioned deep in the hydrophobic cavity surrounded by Cys241β, Leu242β,  
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 Figure 6: Pyrrole analogues docked at colchicine binding site. (A) Substituted pyrroles 
with activity in sub-μM IC50. (B) Ligands with IC50 ranging from 1 μM to 5 μM. (C) 
Ligands with IC50 value above 5 μM.  
  

 

 

 

a 

b 

c 
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Leu248β, Ala250β, Leu255β, Ala354β and Ile378β, all of which contribute to favorable 

hydrophobic-hydrophobic binding. Figure 7 illustrates these interactions in a HINT map, 

where the relative sizes of the displayed contours represent the strength, and the colors 

represent the character, of the interactions between JG-03-14 and the tubulin colchicine 

binding site.  The phenyl ring of JG-03-14 fits in a hydrophobic glove formed by the 

Leu248 and Leu255. Favorable polar interaction with Asn101, Cys241 and Asn258 also 

contribute in binding.  The ethyl ester tail of the ligand faces towards the polar opening 

and is stabilized with a strong hydrogen-bond to the amide oxygen of Asp258β with a 

length of 2.41 Å.  Another set of strong hydrogen-bonds are formed between the amine of 

Asn101α and the carbonyl oxygen (1.48 Å) and alcoholic oxygen (2.72 Å) of the ligand’s 

ethyl ester substituent.  This latter feature, anchoring of the flexible ethyl ester tail, is 

somewhat different in our models as compared to those of Nguyen et al131, probably due 

to the lack of steric constraints at the open polar end of the cavity. 

 

On analyzing subset B, docked ligands in the low μM range, it can be seen that these 

ligands are somewhat similar to the subset A ligands, but with slightly bulkier groups 

overall as in JG-03-12, JG-05-6 and JG-05-1A, more highly substituted at the pyrrole 

ring as in JG-03-12, and/or with less hydrophobic substituents as in JG-03-13, JG-05-4, 

and JG-05-8.  For example, in JG-03-13 the single chlorine substitution is less 

hydrophobic than the two bromines of JG-03-14 and having only one methoxy also 

reduces this compound’s hydrophobicity.  In the case of JG-05-8 only a single methyl 

group substitutes the phenyl ring at the para position.   
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Figure 7: HINT interaction maps for JG-03-14 (ball and stick rendering) at colchicine 
binding site. Blue contours represent regions of favorable polar interactions, e.g., 
hydrogen bonds, red contours represent unfavorable polar interactions and green contours 
represent favorable hydrophobic interactions. 
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JG-03-12 and JG-05-1A have bulkier substitutions at the 5 position of the pyrrole, likely 

leading to their higher (less potent) IC50 values.  The docked models (Figure 6B) and 

detailed HINT analysis confirm this SAR by showing a relatively poor fit in the active 

site for the bulkier ligands, and poorer hydrophobic HINT scores for the less optimally-

substituted ligands.  A single exception, the napthyl-substituted JG-05-6 produces a high 

HINT score inconsistent with its relatively low potency, but this may be due to this 

compound being too hydrophobic (Table 2) for solubility or transport to the site (vide 

infra).  

 

Lastly, many of the subset C (inactive) ligands (Figure 6C) do not fit well in the site, 

while others are inappropriately decorated to make the required contacts with the site 

residues.  Many of them have one or more bulkier substituents on the pyrrole ring, and 

only fit in the binding pocket with their side chains protruding out of the pocket.   

 

2.3.4 Predictive Models for Ligand Binding 

 Figure 8 presents the correlation between the experimental binding (ΔGbinding as 

calculated from IC50, see Methods) in kcal mol-1 and HINT scores for the eighteen 

synthetic pyrroles in this study.  The IC50s, antiproliferative activities of the compounds, 

are being taken in this work as approximations of binding affinity, with the implicit 

assumption that the antiproliferative activity is wholly due to tubulin binding.  The 

consequences of this assumption will be discussed below.   
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Figure 8: Dependence of the experimental ∆G on HINT score units for Tubulin-pyrrole 
complexes. The solid black line represents the regression for ∆G vs. HINT score for all 
protein-ligand complexes. The red line represents the regression for ∆G vs. HINT score 
excluding the circled outlier (JG-05-3A). 
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The trend represented by the plot of Figure 8 indicates that higher scoring complexes are 

generally among those with more favorable free energies of binding, while lower scoring 

complexes are generally those with unfavorable binding.  The correlation equation: 

 

 ΔG = –0.0039 HTOTAL – 6.35,     (8) 

 

has an r2 = 0.5818 and a standard error of ± 0.52 kcal mol-1.  A better correlation is 

observed after omitting the outlier JG-05-3A from the correlation.  Although this 

compound shows a high HINT score suggesting optimal intermolecular interactions 

within the tubulin colchicine site, it has a very high logPo/w value of 9.02 (Table 2) 

suggesting that this compound would likely not be transported to the binding site and 

may even be insoluble.  The scoring function does not take into account cell permeability 

and completely ignores whether or not the compound could in vivo or in vitro be 

accessible to the binding site.  Thus, the unfavorable physiochemical properties of JG-05-

3A, and not statistical evaluation, warrant excluding it from the model and justify treating 

it as an outlier.  Ignoring this outlier gives an r2 = 0.76 and a standard error of ± 0.41 kcal 

mol-1, with a very similar correlation equation:  

 

         ΔG = –0.0039 HTOTAL – 6.51,     (9) 

 

We believe that this model is predictive such that we can identify the active (subset A) 

ligands from the inactive (subset C) ligands with reasonable confidence and that further 

refinement of the model with additional data will improve its usefulness.  However, it 
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must be noted that the EC50 for tubulin depolymerization data (Table 2) suggest that 

several of the compounds (two in set A) that dock in the colchicine binding site with high 

HINT scores do not appear to cause perturbations of cellular microtubules, i.e., their 

interactions within the colchicine binding site may not be the mechanism of cytotoxicity.  

Thus, while we cannot state that all antiproliferative activity is due to tubulin binding in 

the pyrrole compounds, there is enough experimental information for several of the more 

active compounds, and a compelling case for JG-03-14, to believe that designing ligands 

to bind with optimimum interactions in the tubulin colchicine binding site will produce 

compounds that will likely disrupt cellular microtubules and cause antimitotic actions.  

 

 2.4 Summary  

The present communication demonstrates that the state-of-the-art molecular modeling 

calculations along with HINT interaction calculations are able to complement 

experimental studies of binding in many aspects, including accurate representation of the 

structure of the complex and the binding mode of putative drugs.  The structural analysis 

of the binding pocket has identified important intermolecular contacts that mediate 

binding. The complex with JG-03-14 has the highest binding score corroborating the 

experimental data.  In conclusion, the present series of pyrrole analogues have yielded 

representative compounds that are potent tubulin polymerization inhibitors and others 

that bind with less efficacy, but that still provide useful information for designing 

compounds with improved performance and selectivity.   
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CHAPTER 3 
 

 
Hydropathic Analysis and Biological Evaluation of Stilbene 

Derivatives as Colchicine Site Microtubule Inhibitors with Anti-

Leukemic Activity. 
 
 
 
3.0 Abstract 

The crucial role of the microtubule in the cell division has identified tubulin as a target 

for the development of therapeutics for cancer; in particular tubulin is a target for 

antineoplastic agents that act by interfering with the dynamic stability of microtubules.  A 

molecular modeling study was carried out to accurately represent the complex structure 

and the binding mode of a new class of stilbene-based tubulin inhibitors that bind at the 

αβ-tubulin colchicine site.  Computational docking along with HINT score analysis fitted 

these inhibitors into the colchicine site and revealed detailed structure-activity 

information useful for inhibitor design.  Quantitative analysis of the results was in good 

agreement with the in vitro antiproliferative activity of these derivatives (ranging from 3 

nM to 100 μM) such that calculated and measured free energies of binding correlate with 

an r2 of 0.89 (standard error ± 0.85 kcal mol-1).  This correlation suggests that the activity 

of unknown compounds may be predicted.   
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 3.1 Introduction 
 
 
Stilbene-based compounds are largely present in nature and have become of particular 

interest to chemists and biologists because of their wide range of biological 

activities141,142. Stilbene itself does not occur in nature, but hydroxylated stilbenes have 

been found in many medicinal plants. The hydroxylated stilbene trans-resveratrol (trans-

3,40,5-trihydroxystilbene, Figure 9) is a phytoalexin present in grapes and plays a role in 

the prevention of coronary artery disease associated with red wine consumption141,143-145. 

Resveratrol has also antioxidant and anti-inflammatory properties and could be a 

potential chemopreventive and therapeutic agent in cancer146,147. In vitro inhibition of cell 

proliferation148 and in vivo anti-neovascularization by resveratrol have been 

demonstrated149. On the other hand, the cis-stilbene motif represents a key structural 

feature of a broad class of natural and synthetic compounds endowed with an 

exceptionally strong tubulin polymerization inhibitor activity interfering mainly with 

microtubule formation at the tubulin colchicine binding site. In this context, the natural 

cis-stilbene combretastatin A-4 (CA-4) (Figure 9), an antimitotic agent isolated from the 

bark of the South African tree Combretum caffrum, and its 30-amino derivative (AC-

7739) possess potent and interesting antitumor activity150,151.  

 

Combretastatins have been demonstrated to bind at the colchicine binding site and 

destabilize microtubule assembly and prevent spindle formation in mitotic cells152. The 

relatively simple structure and high affinity of combretastatins for the colchicine binding 

site has led to the synthesis and subsequent evaluation of a large number of
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RH3CO

OCH3 OCH3

A B

OR3

R4
R2O

R1

OR

trans-Resveratrol R=R1=R2=R3=R4=H

 Combretastatin A-4(CA-4) R=R2=R3=CH3, R1=OCH3, R4=OH

AC-7739 R=R2=R3=CH3, R1=OCH3, R4=NH2

a: Stilbene 5c R=NH3
+Cl-

b: Stilbene 6c R=OH  

Figure 9. Natural and synthetic stilbenes 
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analogues; novel compounds derived from this core continue to hold interest as potential 

therapeutics152-154.  Stilbene and its analogues (Figure 9 a, b) are structurally similar to 

combretastatin and are also able to bind to microtubules, suppress microtubule dynamics, 

and arrest the cell cycle at a G2/M phase that is associated with induction of 

apoptosis155,156.  

 

Their mechanism of action is related to tubulin-binding properties that result in rapid 

tumor endothelial cell damage, neovascular shutdown and subsequent hemorrhagic 

necrosis157. Our collaborative group has recently synthesized a series of derivatives 

structurally related to both resveratrol and CA-4, in cis and trans orientations. 

Modifications were made by placing OH, NH2, or OCH3 groups at positions 30 and 40 

and OCH3 at positions 3,5. The IC50 for each of each stilbene was tested in HL60 cells. 

Several active stilbenes were identified and, among them, cis-3,40,5-trimethoxy-30-

aminostilbene (5C) and cis-3,40,5-trimethoxy-30-hydroxystilbene (6C) were found to 

induce HL60 apoptosis at nanomolar concentrations (IC50 = 30 nM)158. Examination of 

the structures of stilbenes 5C and 6C reveals similarity to colchicine, combretastatin 

CA4158, ZD6126, and AVE-8062.  

 

The new stilbenes interfere with microtubule formation at the tubulin colchicine binding 

site (Figure 10), in a similar manner as CA-4 and AC-7739, inducing apoptosis in HL60 

leukemia cells, but not in normal c-kit-positive hematopoietic progenitor cells at similar 

concentrations156. These two stilbenes have a similar cytotoxic effect in HL60 cells  
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 Figure 10. The Tubulin-colchicine:RB3-SLD complex, The complex includes  
alternating tubulin αβ heterodimers, with the colchicine binding site at the intradimer 
interface, the taxol binding site on the β subunit and the vinblastine binding site at the 
interdimer interface of the αβ subunit.  
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expressing multiple-drug resistant gene158, which is responsible for chemotherapeutic 

resistance to anthracycline in leukemia. In addition to the effect in leukemia cells, 

stilbene 5C is also highly potent against various solid tumor cells and blocks cell cycle 

progression in G2-M phase158. Stilbene 5C is tolerated in mice up to 100 mg/kg by 

intraperitoneal injection without major organ toxicity. In particular, there was no bone 

marrow toxicity, and the ability of bone marrow engraftment was not affected by stilbene 

5C treatment156. Similar to other colchicine site tubulin inhibitors, stilbene 5C selectively 

suppresses tumor vascular perfusion without damaging normal vascular perfusion based 

on a DCE-MRI study159. Most importantly, mice treated with five daily injections of 5C 

at 25 mg/kg/day did not show any compromise in heart function, indicating that it could 

be a colchicine site inhibitor with negligible cardiotoxicity159.  

 

As the synthesis of stilbene analogues is relatively facile, our goal for this study was to 

create a quantitative structure-activity model of these compounds that would guide the 

synthesis of new, potentially more efficacious stilbene derivatives. Thus, we report here 

on the structural requirements for interaction between stilbene analogs and tubulin with 

computational docking and hydropathic scoring of multiple stilbene analogs into the 

colchicine-binding site of tubulin. 

 

 3.2 Materials and Methods  

3.2.1 Synthesis 

Synthesis of stilbenes 5c, 6c and its analogs (Figure 11) was performed as described by 

Roberti et al.158 who provided all samples for bioactivity analysis. 
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Figure 11: Stilbene analogs 
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3.2.2 Antiproliferative Activity of Stilbenes against Human Tumor Cell 

Lines 

 The antiproliferative activity of stilbene derivatives was determined by Alamar BlueTM 

staining. The bioassays were carried out in the lab of Dr. Ray Lee at Massey Cancer 

Center, VCU. In brief, cells were grown in 96-well plates and treated with 0, 0.01, 0.03, 

0.1, 0.3, 1.0, and 3.0 μM of the stilbene for 48 hours before being harvested for Alamar 

blueTM staining. In this staining, 1/10 volume of Alamar Blue™ solution was added to 

each well and optical density (OD) at 570 and 600 nm was determined by a microplate 

reader.  The percentage of growth inhibition was calculated according to the 

manufacturer’s formula as follows:  [(117216 x A570) –(80586 x A600)]/[(117216 x Ao
570)- 

(80586 x Ao
600)] x 100. In this formula, A570 is the absorbance of the treated samples at 

570 nm; A600 is the absorbance of the treated samples at 600 nm; Ao
570 is the absorbance 

of the untreated samples at 570 nm; and Ao
600 is the absorbance of the untreated samples 

at 600 nm. The two constants, 117216 and 80586, are the extinction coefficients of 

Alamar Blue™ at 570 and 600 nm respectively. Each concentration was repeated in 

triplicates.   

 

3.2.3 Model Building 

The X-ray crystal structure (3.58 Å) of αβ-tubulin complexed with DAMA-colchicine132 

(PDB code: 1SA0) was used in this study. The stathmin-like domain and the C and D 

subunits were removed from the model.  After hydrogen atoms were added to the model, 

their positions were optimized to an energy gradient of 0.005 kcal-Å/mol with the Tripos 

force field (in Sybyl 7.3) while keeping heavy atom positions fixed. The models for stilbene 
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analogues were constructed using the Sybyl 7.3 (www.tripos.com) suite and optimized 

similarly78.  

 

3.2.4 Docking 

Computational docking was carried out using the genetic algorithm-based ligand docking 

program GOLD 3.069. GOLD explores ligand conformations fairly exhaustively and also 

provides limited flexibility to protein side chains with hydroxyl groups by reorienting the 

hydrogen bond donor and acceptor groups. The active site was defined by using 

colchicine as the reference molecule in the protein active site creating an approximate 

radius of 10 Å around the reference molecule using the GOLD cavity detection 

algorithm.  Because of the relatively poor resolution of the X-ray crystal structure and 

following the approach of Nguyen et al.131, GOLD docking was carried out with template 

similarity constraints. This constraint biases the conformation of docked ligands towards 

a given solution. The trimethoxyphenyl fragment of colchicine was used as the template 

for biasing the pose of all ligands. In this study we performed 100 GOLD genetic 

algorithm runs, as opposed to the default of 10 and early termination of ligand docking 

was switched off.  All other parameters were as the defaults.  To evaluate and validate 

GOLD performance the co-crystallized ligand DAMA-colchicine132 was extracted and 

docked.  GOLD accurately reproduced the experimentally observed binding mode of 

DAMA-colchicine in αβ-tubulin. Combretastatin was docked first and the resulting 

model was scored and optimized. The remaining stilbene analogs were docked and 

optimized using combretastatin as a reference within 0.5 Å RMSD by using the same 
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parameters. Docked ligands were scored using the HINT force field scoring function and 

iteratively optimized for maximal interaction.  

 

Dockings with different/optional constraints such as enforced hydrogen bonds, 

hydrophobic regions and scaffold match were also explored.  For hydrogen bond 

constraints, docking was biased so that the ligands make hydrogen bonds with Asn258, 

Ser178, Asn101, and the backbone amides of Ala180 and Val181. For region 

hydrophobic constraints the ligand positions were constrained by defining a hydrophobic 

sphere where the tri-methoxy phenyl moiety of colchicine was positioned.  Then specific 

ligand atoms to be docked in the hydrophobic region of the active site were defined.  

Alternatively, scaffold match constraints were used to place the ligand at a specific 

position within the active site.  Generally, however, because the binding site is rather 

featureless, constraint or template-free docking was not successful.   

 

3.2.5 Hydropathic Scoring 

The HINT (Hydropathic INTeractions) scoring function91 (version 3.11S β) was used to 

investigate the structural aspects of the interactions by analyzing and ranking the GOLD 

docking solutions.  For selection of the optimum docked conformation and to further 

differentiate the relative binding efficacy of the stilbene ligands, interaction scores were 

calculated for each pose found by docking. The protein and ligands were partitioned as 

distinct molecules. “Essential” hydrogen atoms, i.e., only those attached to polar atoms 

(N, O, S, P) were explicitly considered in the model and assigned HINT constants. The 

inferred solvent model, where each residue is partitioned based on its hydrogen count, 
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was applied.  The solvent accessible surface area for the amide nitrogens of the protein 

backbone were corrected with the “+20” option. Finally, HINT scores were plotted 

against experimental binding free energy. 

 

3.3 Results and Discussion  

3.3.1 Antiproliferative Activity of Stilbene Analogues 

The biological activity of all compounds was tested in UCI101 ovarian cancer cells and 

qualitatively similar trends were observed in MDA-MB231 breast cancer cells160. 

Compounds could be separated into three groups according to their potency. Group A 

contains the most potent compounds, including combretastatin, stilbene 5C, GG251, 

colchicine, DAMA-colchicine, VT23 and stilbene 6C with IC50 less than 100 nM. Group 

B contains GG240, GG247, GG245, GG249, which has IC50 in the intermediate range 

between 0.3 and 1.0 μM.  Group C is not active with IC50 above 5 μM (see Table 3). 

 

3.3.2 The Colchicine Binding Site 

A number of groups have performed modeling studies on the colchicine binding site 

because it is recognized as a potential target for anticancer drug development131. 

However, the low resolution of the available crystal structures for tubulin have made it 

difficult to fully delineate the essential structural and functional features involved in 

tubulin inhibition. In a low resolution crystal structure model our knowledge of the 

correct orientation of sidechains is limited by ambiguities in position and orientation 

because the experimental electron density envelopes are generally featureless. The crystal 

structure of tubulin protein used in this study has a fairly poor resolution of 3.58 Å, which  
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Table 3: Experimental IC50 and docking results for Stilbene and Campione derivatives. 

 
 
 

Compound Activity 
Set IC50

a pIC50
 

ΔGbinding 
(kcal 
mol-1) 

HINT 
score 

HINT 
LogP 

Combretastatin 3.3 ± 0.4 nMb 8.53 -11.62 1015 4.43 
Stilbene 5C 32 ± 4 nM 7.53 -10.26 860 4.05 
GG251 28 ± 3 nM 7.53 -10.26 861 4.73 
Colchicine 30 ± 2 nM 7.53 -10.26 841 3.24 
DAMA-colchicine 29 ± 2 nM 7.53 -10.26 810 3.70 
Stilbene 6C 52 ± 7 nM 7.30 -9.96 673 3.94 
VT23 

A 

65 ± 8 nM 7.22 -9.85 446 3.17 
GG240 0.32 ± 0.02 μM 6.52 -8.89 579 2.85 
GG247 0.30 ± 0.04 μM 6.52 -8.89 563 3.99 
GG245 1.0 ± 0.08 μM 6.00 -8.18 285 3.44 
GG249 

B 

1.1 ± 0.07 μM 6.00 -8.18 278 3.10 
CTR104 5.2 ± 0.9 μM 5.30 -7.23 252 5.60 
CTR105 10 ± 0.9 μM 5.00 -6.82 -202 2.44 
CTR103 105 ± 6 μM 4.00 -5.45 49 5.44 
CTR106 110 ± 12μM 4.00 -5.45 -446 5.37 
VT54 

C 

107 ± 14μM 4.00 -5.45 -313 2.98 
  

 

 

 

 

 

 

aAntiproliferative activity against UCI-101 ovarian cancer cell line using the Alamar 
Blue assay.  
-pIC50 and ΔGbinding calculated for 10×IC50. 
-Colchicine IC50 data was recorded against UCI-101 ovarian cancer cell line.  For 
calculation purposes DAMA-colchicine was assumed to have same binding as 
Colchicine.  
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somewhat undermines our ability to structure-based design highly selective ligands132. In 

earlier studies with the colchicine binding site we carried out computational docking 

studies along with hydropathic interaction analysis on a family of substituted pyrroles and 

were able to represent the complex structure and the binding modes of the pyrrole class 

of inhibitors (see chapter 2)100.  

 

Binding modes for each stilbene analogue were investigated to understand the steric, 

electrostatic, and hydropathic features of the colchicine binding site. A molecular 

modeling study of docking these ligands into the colchicine site of αβ-tubulin was carried 

out in order to accurately represent the complex structure. The colchicine binding site is 

positioned at the interface between the α and β subunits of the tubulin protein, with the 

major part of it buried in the β subunit and lined by helices 7 and 8. The cavity, which is 

funnel shaped, has a volume of about 600 Å and opens up towards the α subunit of the 

interface surrounded by residues Asn101α, Thr179α, Ala180α, Val181α and Thr314β, 

Asn349β, Asn350β, Lys352β. The other, β subunit, end of the cavity is surrounded by 

residues Tyr202β, Val238β, Thr239β, Cys241β, Leu242β, Leu248β, Leu252β, Leu255β, 

Ile378β, and Val318β and forms the narrow funnel end-like part of the cavity. The 

predominance of hydrophobic residues confer a strong hydrophobic character to this part 

of the cavity. At the wider portion, the cavity is surrounded by Ala250β, Asp251β, 

Lys254β, Asn258β, Met259β, Ala316β, Ala317β, Thr353β and Ala354β making it 

moderately polar/moderately hydrophobic. DAMA-colchicine (and presumably 

colchicine) is snugly positioned in the crystal structure of the complex. The 

trimethoxyphenyl (TMP) moiety of colchicine is positioned in the pocket such that its sits 

snugly in the narrow hydrophobic region of the pocket with one of its methoxy oxygens 
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involved in hydrogen bonding with the thiol of Cys241β. Colchicine also forms hydrogen 

bonds with the backbone amides of Ala180α and Val181α. 

 

The structural complex as reported in the X-ray structure was refined through ligand 

functional group and protein sidechain optimization, as incorporated in the HINT 

program. Iteratively, colchicine was translated and rotated and optimized for interactions. 

Taking colchicine as the template, combretastatin was computationally docked and 

scored. Similar to above, the combretastatin-tubulin complex was optimized.  Next, the 

stilbene analogs were docked, this time taking combretastatin as the template, followed 

by HINT functional group and protein sidechain optimization. The docked models of the 

stilbene analogs fit within the pharmacophore model proposed by Nguyen et al.131 and 

are similar to the models we reported earlier in chapter 2 for the pyrrole derivatives 

bound to αβ-tubulin100.  These studies, coupled with HINT interaction analyses, are able 

to describe the complex structure and the binding modes of stilbene inhibitors. Note that 

HINT scores are very sensitive and slight positional differences are detectable in the 

scores. Qualitative analyses of the results showed general agreement with the 

experimental in vitro antiproliferative activity for these derivatives.  

 

3.3.3 Structure-Activity Binding Relationships  

Structural analysis of the binding pocket identified important intermolecular interactions 

that mediate binding. The stilbene analogues were clustered into three activity sets in 

order to study them in detail (see Table 3).  The first (A) was comprised of compounds 

that showed activity from 3 nM to 60 nM IC50.  The second (B) consisted of ligands with 
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IC50 values ranging from 0.3 μM to 1 μM.  The remaining ligands, with IC50 values of 5 

μM and above, comprised the third set (C).  HINT hydropathic analysis reveals 

significant detail concerning the forces orienting these ligands in the binding site.  First, 

hydrophobic interactions are the dominating force contributing towards the stability of 

the complexes, with additional hydrogen-bonding interactions anchoring the ligands in 

the cavity. The trimethoxyphenyl (TMP) moieties of colchicine and combretastatin are 

positioned within the narrow hydrophobic region of the cavity while the carbonyl oxygen 

on the unsaturated seven-member ring of colchicine and the hydroxyl group on 

combretastatin B ring are anchored through strong hydrogen bonding interactions with 

Asn258β and the Ala180α and Val181α backbone amides.  

 

First, in examining the docked models for activity subset A (see Figure 12A), it is 

interesting to note that, although the stilbene compounds and combretastatin are quite 

dissimilar structurally to colchicine (excepting the TMP moiety), they are generally 

positioned in the binding pocket with essentially the same mode. In the case of stilbene 

5C and GG251 the hydrophobic substituted phenyl ring fits snugly in the hydrophobic 

(narrow funnel) region of the binding pocket that superimposes on the TMP moiety of 

colchicine.  In fact, stilbene 5C and GG251 have a very similar binding mode to that of 

combretastatin, the major contribution towards binding coming from hydrophobic 

interactions. The methoxy substituted phenyls are positioned deep in the hydrophobic 

cavity surrounded by Cys241β, Leu242β, Leu248β, Ala250β, Leu255β, Ala354β and 

Ile378β, all of which contribute to favorable hydrophobic-hydrophobic binding. The 

phenyl ring of Stilbene5C and GG251 fits in a hydrophobic glove formed by the Leu248β 
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and Leu255β. Favorable polar interaction with Asn101α, Cys241β and Asn258β also 

contribute to the tight binding. The NH2 group on the B ring of Stilbene5C faces towards 

the polar opening and is stabilized with a strong hydrogen-bond to the amide oxygen of 

Asn258β with a length of 2.55 Å. Another set of strong hydrogen bonds is formed 

between the amide backbone of Val181α and the amine on the B ring of Stilbene5C with 

a hydrogen bond distance of 3.384 Å.  However, in the case of GG251 the hydrogen 

bonding interaction is not observed with the Asn258β and Val181α amide backbone, 

instead the complex is predominantly stabilized through hydrophobic interactions. 

Similar interactions are observed with stilbene 6C and VT23 with some subtle 

differences.   
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Figure 12. Stilbene analogs docked at the colchicine binding site on αβ-tubulin. (a) 
Substituted stilbenes with activity in sub-μM IC50. (b) Compounds with IC50 ranging 
from 0.3 μM to 1.0 μM. (c) Compounds with IC50 values above 5 μM.   
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In the case of stilbene 6C, although the hydroxyl group is retained on the B ring as in 

combretastatin, the removal of methoxy group from the position 4 of TMP moiety results 

in loss of activity. However, this loss is offset by introducing the NH2 group on ring B in 

stilbene 5C, thus accounting for the slight differences in their activity. In the case of 

VT23 the extension of methoxy chain on TMP moiety results in further loss of activity 

probably due to geometric constraints enforced by the narrow hydrophobic region of the 

cavity.  

 

On analyzing subset B (compounds GG240, GG247, GG245, and GG249), docked 

ligands in the low μM range, it can be seen that these ligands are relatively similar to the 

subset A ligands.  In this set of compounds substitution on ring B, in the cases of GG240, 

GG247 and GG249 the indole-carrying ring and in GG245 the amine and methoxy 

carrying ring, is varied. These substitutions result in a 10-fold decrease in the activity in 

compounds GG240 and GG247 where the N-methyl substitution is removed from the 

indole ring of GG251.  Flipping the ring, as in the 6- and 5- substituted indole ring of 

GG240 and GG247, does not have any significant affect on activity. Activity is further 

decreased if the indole ring is replaced by a benzimidazole ring as in compound GG249 

and a similar loss in activity is noted in GG245 where the methoxy groups of the stilbene 

5C methoxy phenyl moiety is replaced by a methyl group and a hydroxyl group, 

confirming the importance of the methoxy phenyl moiety on ring A in binding. The 

benzofuran and benzothiophene analogs in the CTR series of compounds (subset C) are 

similar to 2-aroylindoles, where the 2-aroylindole ring is replaced by benzofuran and 

benzothiophene. Our docked complexes with the CTR series of compounds agree with 
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the Nguyen et al. pharmacophore model131, but the rings are inappropriately substituted 

to make the required contacts with the binding site residues – leading to poor activity of 

these compounds.  Figure 13 represents the putative binding mode of Stilbene 5c, the 

most potent compound of the series. 

 

3.3.4 Predictive Models for Ligand Binding 

Figure 14 presents the correlation between the experimental binding (ΔGbinding as 

calculated from IC50) in kcal mol-1 and HINT scores for the synthetic stilbene analogs in 

this study.  The trend represented by this plot indicates that higher scoring complexes are 

generally among those with more favorable free energies of binding, while lower scoring 

complexes are generally those with unfavorable binding.  The correlation equation: 

 

 ΔG = –0.0041 HTOTAL – 6.877,     (10) 

 

has an r2 = 0.898 and a standard error of ± 0.85 kcal mol-1.   

 

The IC50s, antiproliferative activities of the compounds, are being taken in this work as 

approximations of binding affinity. The scoring function does not take into account cell 

permeability and completely ignores whether or not the compound could in vivo or in 

vitro be accessible to the binding site.   
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Figure 13: Representation of interactions of stilbene 5C in the colchicine active site of 

the tubulin protein.  
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Figure 14. Correlation plot between free energy of binding, ∆G vs. HINT score.  The line 
represents the regression for ∆G vs. HINT score for all protein-ligand complexes in this 
study.  
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However, the similar structures of these compounds and the fairly narrow range of LogPs 

suggest that these properties would be similar, if not the same, for all of these 

compounds, and thus can probably be ignored while comparing the compounds within 

the series.  We believe that the model of Figure 14 is predictive such that it can 

distinguish the active (subset A) ligands from the inactive (subset B) ligands with 

reasonable confidence. Refinement of the model with additional data will further improve 

the understanding of binding process and predictive ability of the model. 

  

3.4 Summary 

The aim of this study was to accurately represent the complex structures and the binding 

mode of a new class of stilbene-based tubulin inhibitors. Both qualitative and quantitative 

analysis of the results suggested that the model was in general agreement with the in vitro 

antiproliferative activity observed experimentally for these compounds. A good 

correlation between the modeled interaction energies and estimated free energies of 

binding calculated from IC50 suggest that our model is able to represent the complex 

structures and the binding modes of inhibitors and under some circumstances be 

predictive with respect to new members of the stilbene series. We believe that we can 

identify active ligands from inactive ligands with reasonable confidence; our analysis has 

provided a rationale for selecting substituents that will yield more tightly binding 

analogues. 
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CHAPTER 4 

 
 

A Novel and Efficient Tool for Identifying and Characterizing  

Protein Cavities and Binding Sites. 
 
 

 
4.0 Abstract 
 
Systematic investigation of a protein and its binding site characteristics are crucial for 

designing small molecules that modulate protein functions. However, fundamental 

uncertainties in binding site interactions and insufficient knowledge of the properties of 

even well-defined binding pockets have often made it difficult to design effective drugs 

with optimal activity. Herein, we report the development and implementation of a novel 

cavity detection algorithm that utilizes HINT toolkit functions that we are naming VICE 

(Vectorial Identification of Cavity Extents).  This algorithm, which is based on geometric 

criteria applied to simple integer grid maps to delineate binding sites, is very efficient.  In 

testing, we carried out a systematic investigation on a diverse set of proteins for locating 

and characterizing the indentations, cavities, pockets, grooves, channels and surface 

regions on proteins, protein-protein and protein-polynucleotide complexes.  An 

interactive front-end provides a quick and simple procedure for identifying, displaying 

and manipulating cavities in a known protein structure.  Information describing the cavity 

including its volume and surface area metrics, and lists of atoms, residues and/or chains 
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lining the binding pocket can be easily obtained and analyzed.  For example, the relative 

cross-sectional surface area (to total surface area) of cavity openings in well-enclosed 

cavities is 0.06 ± 0.04 and in surface clefts or crevices is 0.25 ± 0.09.   

 

4.1 Introduction 

Modulation of the dynamics of a target protein binding site to elicit a pharmacological 

response is the major therapeutic approach for the treatment of a plethora of diseases. 

This is usually accomplished by developing small molecules that occupy a ligand 

recognition site.  Drug development is a challenging process, owing to fundamental 

uncertainties in structural determination and associated issues such as structural and 

physicochemical characterization of the binding pockets, even under relatively static 

conditions such as in crystals subjected to x-ray analyses.  Reliable, rational and efficient 

approaches to identifying and characterizing the binding sites of protein and other 

bioactive molecules should be valuable in the design of new drugs161.  In recent years 

there has been a surge in the number of crystal structures deposited in Protein Data 

Bank162.  Concomitantly, NMR and X-ray crystallography have played an increasingly 

crucial role in drug discovery through structure-based methods and virtual screening of 

extensive libraries of compounds.  Facilitating this has been the design and development 

of many computational tools with a large range of functions.  In particular, a number of 

programs have been developed to de novo identify the binding pockets in proteins161,163.  

Such tools have provided valuable information for better understanding protein binding 

site architecture.  However, the accurate identification and quantitation of binding 
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pockets is not an entirely straightforward process, and the existing computational tools 

have numerous strengths and weaknesses. 

 

Proteins have “pockets” for molecules to bind; however, these pockets may not be 

observed from an initial inspection.  Protein surfaces are formed by numerous cavities 

and protrusions that are interlinked through small narrow channels and are often are 

interspersed with numerous holes or voids.  However, amidst all of this surface 

irregularity, the complex positioning of residues creates specific microenvironments for 

ligand recognition, binding and catalysis.  These ligand binding sites vary widely in 

shape and size and are often roughly classified according to their position on a protein 

and/or shape and described as deep pocket, grooves, indentations, surface concavities, 

branched pockets, voids, channels, etc.  The size and shape of these protein cavities 

dictates the three-dimensional geometry of ligands that will bind within, and guides the 

important intermolecular contacts that mediate this binding.  Binding sites that are 

formed by several neighboring pockets/cavities and auxiliary pockets near the active site 

are often suggested as providing additional ligand binding surface, which adds further to 

the complexity. Efficient analysis of the shape and size of protein pockets and cavities 

thus becomes important as structural changes due to side-chain rotations and backbone 

movements, loop motion and/or ligand-induced conformational changes may 

significantly alter the topography of the active site.  A thorough structural analysis of the 

target binding site is critical to propel a drug discovery project forward. There has been 

significant progress in this endeavor in recent years161,163,164.  
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4.1.1   Theoretical Approaches for Identifying Binding Sites on Proteins.  

Identification and characterization of active sites is key in studying protein structure, 

particularly when designing molecules that interfere with function and modulate activity.  

There are a number of ways in which binding sites or cavities in proteins can be located 

and characterized, e.g., with several existing programs such as VOIDOO 165, LIGSITE 

166, POCKET 167, POCKET-FINDER 168, CAST 169, PASS 170, APROPOS 171, SURFNET 

172, Q-SITEFINDER 173 and others.  These programs can be generally classified into 

categories according to the approach they take to identify and delineate the cavity: i) 

evolutionary methods (structure/sequence alignments); ii) probe/energy-based methods; 

and iii) geometric approaches.  

 

Evolutionary methods use a heuristic approach to predict cavities in unknown proteins 

from known protein structures based on family and/or functional criteria.  With the 

abundance of structural- and sequence-related data for many protein families, this 

approach has found increased application in identifying and characterizing protein target 

binding sites174,175.  Structural similarity and three-dimensional templates are used to 

compare and classify putative binding sites in uncharacterized protein structures with 

unknown functions, e.g., with similarity searches over functional site databases like 

LigBase 176 and INTERPRO 177 that detect functional similarity when homology is 

minimal.  The approach by Bickel et al. 178 uses statistical methods to identify active sites 

by residue identity within and outside functional subfamilies.  Programs like ConSurf 179 

identify functional regions of proteins by surface mapping of phylogenetic information, 

while Rate4Site 180 applies evolutionary determinants in mapping the functional regions 
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on a protein surface.  These methods are likely to continually evolve with the increasing 

availability of structural and sequence data from structural genomics projects. 

 

The idea of in silico mapping of protein surfaces was first conceptualized by Lee & 

Richards (1971) 181 based on the idea of an “accessible” surface area.  Connolly (1982, 

1983) 182 suggested the concept of “solvent excluded surface” and developed the 

eponymous algorithm for calculating molecular surfaces with a rolling spherical probe.   

Later, Kuntz et al. developed an algorithm that fills all pockets and grooves on the 

surface of receptor molecule with a set of balls 183.  While the probe sphere radius is 

generally 1.4 Å to approximate a water molecule surveying the solvent accessible surface 

of the protein, this sphere radius can be varied to map other representations such as the 

van der Waals surface.  Kuntz et al. used this approach to define the binding site in the 

first implementations of the DOCK automated docking program 33,184.  Another novel 

approach of using spherical probes on a regular Cartesian point grid was implemented by 

Peter Goodford in GRID 185 and by Martin Karplus in MCSS (multiple copy 

simultaneous searches) 186.  In GRID, a binding region on a protein is mapped by 

calculating interaction energies between a (functional) probe group placed at each grid 

point and the atoms of the protein.  In MCSS, about 1000 to 5000 small functional groups 

(probes) are interacted with the protein surface simultaneously and energy minima are 

calculated to define favorable interaction sites.  The generated functional maps of the 

binding site indicate the most favorable regions for placing ligand groups with properties 

similar to the probes.  A number of cavity detection algorithms based on this approach 

have been reported: Voorintholt et al. adopted an approach where grids are used to store 
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the distance to the nearest atom 187; a similar approach was taken by Del Carpio et al. 188 

in searching for pocket regions in a protein; the POCKET program by Levitt and 

Banaszak 167 uses a 3D Cartesian grid and spherical probes to map protein surfaces and 

pockets using a modification of the marching cubes algorithm; and the CHANNEL 

algorithm 189 uses a sphere of radius R to probe a node space that fills the unit cell of a 

crystal lattice.  

 

Some probe/energy-based approaches to detect cavities overlap with geometric 

approaches in a way that a probe of a specified volume is only used to exclude van der 

Waals overlap as the protein surface is surveyed.  The VOIDOO program reported by 

Kleywegt and Jones 165 uses atom fattening or a flood fill algorithm on a regular 3D grid 

to identify and delineate cavities.  Another such widely used algorithm for cavity 

detection is LIGSITE developed by Hendlich, Rippmann and Barnickel 166.  This 

algorithm is similar to POCKET, but circumvents many of its drawbacks: first, grid 

points within a protein atom’s van der Waals sphere are discarded; next, the remaining 

lattice points are scored according to their degree of burial by scanning grid points along 

the three Cartesian axes and the four cubic diagonals; and finally, the area delineating 

these grid points is clustered to describe contiguous cavities.  Another method totally 

relying on geometric criteria is the PASS algorithm developed by Brady and Stouten 170 

where the cavities in a protein are filled with a set of spheres.  

 

Cavity detection based on alpha shape theory 190 incorporates a different, purely 

algorithmic, approach.  The Automatic PROtein Pocket Search (APROPOS) method 
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developed by Peters, Fauck and Frömmel 171 is based on purely geometric criteria for 

identifying binding sites using atomic coordinates.  Atoms are represented as a set of 

points in 3D Euclidean space and the envelope or surface is derived by Delaunay 

triangulation 191 of these points.  The alpha shape algorithm describes these surfaces as 

lists of adjacent triangles and, depending on the value of alpha, delineates the cavity 

shape.  The program CAST developed by Liang and Woodward 169 also applies alpha 

shape principles along with discrete flow theory to determine the shape of the binding 

pocket as a negative image of cavity derived from Delaunay tetrahedrons 191.  Alpha 

shapes and Delaunay triangulations are rich in geometric information from which area 

and volumes of inaccessible cavities can also be calculated. Most of these algorithms can 

fairly easily identify binding pockets and can be used in combination with other drug 

design tools to provide valuable information for structure-based drug design projects.  

  

4.1.2   Vectorial Identification of Cavity Extents (VICE) 

 The present chapter describe our work in developing computational tools for drug design 

192,193. In this chapter we describe a new computer algorithm called VICE for identifying 

and delineating the active site in proteins or other biomacromolecules based on geometric 

criteria applied to simple integer grid maps using minimal floating point mathematics.  

Our objective in this chapter is to find pockets and shallow binding regions that have the 

characteristics of receptor sites, identify the amino acid residues surrounding them, and 

calculate descriptive metrics regarding the sites.  The algorithm was applied to a diverse 

set of over 60 proteins in order to locate, investigate and characterize their various 

indentations, cavities, pockets, grooves, channels and surface regions.  This is a starting 
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point towards comprehensive analysis of protein topography with respect to its function 

and an efficient and robust method for finding active sites that would be compatible with 

other tools and protocols we have developed based on our HINT empirical force field 

model 91,96,102.  

 

4.2 Materials and Methods 

The dataset of protein complexes in this study consisted of examples from the literature 

having binding pockets of diverse shapes, sizes and types.  Table 3 lists the proteins 

evaluated by their PDB code and the associated cavity type for which the binding sites 

were calculated.  All protein structure coordinates, in PDB format, were retrieved from 

the RCSB (Brookhaven) Protein Data Bank 162.  Molecular modeling was performed 

using the Sybyl 7.3 program suite (www.tripos.com) on Irix and Linux workstations 78.  

The protein structures were prepared for this study by removing all the water molecules, 

ions, and any cofactors associated with the structure.  Hydrogen atoms were added to the 

structures using the “Add Hydrogens” tool within the Sybyl Biopolymer module before 

further analysis.  

 

The cavity detection and analysis programs were constructed using subroutines from the 

HINT toolkit 103.  Several new subroutines were composed for 3D map manipulation and 

analysis.  Of particular value were an enhanced suite of functions for Boolean maps 

(where each grid value can only be zero or one) that forms the basis of the search 

algorithm as described in the Results and Discussion section.  The algorithm provides 

several user-adjustable options to optimize the cavity calculation.  With these parameters 



www.manaraa.com

   

 98

it is possible to change the focus from the entire protein to a small region for a detailed 

investigation.  For the initial surveys in this study, the grid boxes were defined as the 

molecular extents of each biomacromolecule with a grid resolution of 1 Å and margin of 

3-5 Å.  Most importantly, the cavity definition was set at 0.5, which is the fraction of 

vectors reaching a protein “wall” instead of the box edge.  The maximum unrestrained 

path-length (vector length) was set to 20 Å by default but was increased to 40-60 Å to 

explore very large cavities or tunnels and channels.  The minimum closed contour 

volume was set to 100 Å2 to eliminate small clusters or irrelevant voids.  The shaping 

factor was usually set to be 0.50, but was varied from 0.35 to 0.6 to interactively smooth 

some pockets that presented small and inaccessible sub-pocket regions.  In the figures 

shown in this chapter, the surface of the pocket was displayed by contouring the cavity 

map at a value of 0.5, i.e., matching the cavity definition.    

 

4.3 Results and Discussion 

Protein binding regions provide a microenvironment for substrates, inhibitors, other 

proteins or biomacromolecules to interact and modulate the protein’s activity.  This 

chapter describes a computational tool for locating and investigating the binding regions 

of protein from a standard PDB file.  This section describes and illustrates the algorithm, 

outlines the quantitative cavity metrics that can be derived through this algorithm, and 

highlights in some detail several of the more than sixty cases we have used to validate the 

methodology for this work.  The rather remarkable variation that is observed in shapes 

and sizes of binding cavities is evident even from this small number of examples. 
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4.3.1 The VICE Algorithm  

The VICE (Vectorial Identification of Cavity Extents) algorithm is schematically 

illustrated through Figure 15 to 21.  After the region of interest, which can be the entire 

target protein or portions thereof, is defined, a grid cage with user selectable resolution is 

created.  While 1 Å resolution is typical, larger or smaller values may be appropriate 

depending on computational requirements.  The key advantage of this algorithm is that 

many of the calculations are performed on integers and on integer (Boolean) grid maps so 

that the method is very efficient.  In the first step grid points occupied by atoms in the 

target molecule are set to zero, while those unoccupied are set to one.  These latter points 

are potentially in the cavity; each will be examined by the algorithm.  The search tools 

are sets of vectors whose directions are determined by the grid nodes ( Figure 15).  In the 

first shell the set of 2D vectors are {(1,0);(1,1);(0,1);(-1,1);(-1,0);(-1,-1);(0,-1);(1,-1)}, 

while in the second shell set the unique 2D vectors are {(2,1);(1,2);(-1,2);(-2,1);(-2,-1);(-

1,-2);(1,-2);(2,-1)}.  Each vector is projected until it reaches an edge of the grid box 

(Figure 16) and the nodes that the vector passes through constitute a path list.   
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Figure 15: Vector representations of direction: red = shell 1, green = shell 2, blue = shell 3  
 

 

 

Figure 16: Vector (starting in green) continues until reaching grid box edge (red) and all 
nodes in path (orange shading) are tested. 
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Each vector is classified through analysis of its path list (Figure 17) as having: a clear 

path to edge, i.e., it does not pass through an occupied node; a blocked path; or is 

“stalled”, i.e., it has neither reached the box edge nor has it passed through an occupied 

node.  These latter vectors are treated as having clear path; their purpose is to ameliorate 

the possibility that a very long vector may inadvertently pass through occupied nodes 

belonging to another biomacromolecular subunit or because of a slightly curved pocket 

entrance.  The stalled vector length is a parameter that may be adjusted depending on the 

anticipated dimensions of the cavity.  The fraction of vectors classified as blocked is 

evaluated for each grid point.  Thus, each grid point is classified as “inside” or “outside” 

the putative cavity based on a parameter with nominal cutoff value of 0.5 (Figure 18).  A 

few grid points, mostly at the cavity mouth, are ambiguous (e.g., 0.5 ± 0.05); these are 

recalculated with additional shells of vectors and tightening criteria until a final 

disposition can be determined. 

 

Two steps are applied to refine the cavity definition.  First, narrow channels, i.e., one grid 

node in width, and tendrils are eliminated by forcing a requirement that each “inside” 

point have a minimum of “inside” neighbors (Figure 19).  This can be applied recursively 

to “shape” the cavity.  Lastly, to eliminate stray irrelevant pockets, each enclosed surface 

must have a minimum volume.  While these steps can be performed automatically 

without user input, the algorithm is designed to display the intermediate raw maps and 

allow interactive application of the refinement. 
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Figure 17: Each grid point is surveyed with set of vectors that: a) are blocked by 
molecule (black), b) have clear path to box edge (green), or c) are stalled  (pink) because 
with their finite length they do not reach box edge and thus are considered as having a 
clear path.  Node 1 is clearly outside the cavity (more clear than blocked paths), node 2 is 
clearly inside (more blocked than clear), while node 3 is ambiguous requiring further 
examination with shell 2 vectors. 
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Figure 18: The fraction of blocked vectors is represented as a contourable scalar quantity 
that most impacts the definition of “cavityness” at the mouth. 
 

 



www.manaraa.com

   

 104

Figure 19: Tendrils, very narrow channels and other vague regions are tested with 
neighbor count that requires each node to have a minimum number of neighbors defined 
to be inside the cavity.  The nodes indicated in yellow are subject to this filter, which may 
be applied recursively.  Not shown: each closed solid contour must have a minimum 
volume or it will be deleted.  
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4.3.2 Overview of Protein Structure Studies  

We carried out a systematic investigation of VICE on a diverse set of proteins to locate 

and investigate the indentations, cavities, pockets, grooves, channels and surface regions 

on these proteins.  The dataset consisted of examples of proteins from the literature 

having binding pockets of diverse shapes and sizes.  All protein structure coordinates, 

retrieved from the RCSB (www.rcsb.org) 162, were prepared as described in the Methods 

section.  Our test set included: 16 cases where the binding pocket is a well-defined, well-

enclosed, deeply buried pocket; 9 cases where the cavity or groove is on the protein’s 

surface; 10 cases where the cavity is created by a protein–protein interface (more 

challenging since protein–protein dimers do not often show deep well-defined cavities 

that are putative binding sites for small molecules); 10 cases of cavities at DNA- or 

RNA-protein interfaces; 5 cases of protein structure pairs with very flexible binding 

pockets due to movements of flexible loops resulting in both open and closed cavities; 5 

cases of proteins with channels or tunnels, i.e., ion channels, porins, and ligand gated 

channels; and lastly, 4 cases of proteins with multiple and/or allosteric sites including 

some with adjacent auxillary sub-pocket sites that may have additional biochemical roles. 

 

A variety of metrics can be obtained or calculated for protein cavities.  Of the most 

potential interest is the cavity volume that can be reported in terms of both its ligand-

occupied and unoccupied fractions.  Figure 20 illustrates how these metrics are calculated 

through manipulation of integer grid maps.  We have also derived an automated 

algorithmic method (Figure 21) to estimate the cavity cross-sectional entrance areas.  
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Figure 20.  Cavity Volume Metrics.  The volume of the cavity (VC) is indicated by 
yellow shading, the volume of the ligand (VL) is indicated by vertical green bars, the 
volume of the ligand occupying the cavity (VO) is the intersection of VC and VL, i.e., 
yellow shading + green bars. The unoccupied cavity volume is VC – VO, and the volume 
of the ligand outside the cavity is VL – VO. 
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Figure 21: Cavity Entrance Calculation.  The cavity entrance is calculated from the 
derivative of the map illustrated in Figure 18.  Vectors are projected from each grid node 
toward the center-of-gravity of the cavity (dashed lines); the path (as in Figure 16) is 
determined and the absolute value of the difference between the starting grid point and 
the first node on that path is calculated as the derivative.  Paths completely inside or 
outside will have close to zero slope (white), paths clearly crossing from outside to inside 
will have slope values close to one (dark red), while the ambiguous cavity mouth grid 
points will have intermediate slope values. 
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These volume and area metrics for the 64 biomacromolecules, some with multiple 

pockets or symmetry-related sites, in this study are set out from Table 4 to 10.  Lastly, 

identification of protein residues and/or atoms lining the cavity may also be useful 

information for drug design and/or site-directed mutagenesis studies.  These data are 

indicated below for a few cases, but are readily available from the analysis module in the 

algorithm.  In the following paragraphs we focus on several examples, and present, 

somewhat qualitatively, the level of success the VICE algorithm has obtained in 

describing these cavities for a broad range of variations in the architecture of binding 

pocket viz. deeply buried binding pockets, cavities at protein-protein dimer, and with 

DNA/RNA interface.  The method is able to detect cavities, shallow grooves, cleft and 

channels within a protein. The program also addresses the problem of defining the limits 

of a cavity, especially its boundary with free space, i.e., at the entrance (vide infra).  
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4.3.3 Well-enclosed Cavities/Deeply Buried Pockets   

In the initial examples, we characterized deeply buried binding pockets that are, in other 

terms, well-enclosed cavities.  These cases also may be thought of as essentially closed 

continuous volumes in the interior of protein molecules.  While these binding pockets, 

which might bind small molecules, are sometimes not obvious from initial inspection, 

most available cavity detection software can effectively detect them.  Although there may 

be a number of these voids inside a protein, it has been observed that the active site is 

usually the largest cavity in a protein 168,173 because a large pocket provides increased 

surface area and hence increased opportunity for small molecule binding.  Thus, one of 

the problems faced by these algorithms is identifying the primary binding pocket amongst 

(often) numerous small clefts and voids.  In addition, the boundary of the active site is 

often not well demarcated and numerous snake-like tendrils can project from the binding 

envelope.  An important success factor of a cavity detection algorithm is in presenting a 

single, clean well-bounded cavity. 

 

Prostaglandin H2 synthase (PDB 1eqg) is an example of this class of cavity.  A detailed 

structural analysis of NSAID binding with prostaglandin H2 synthase is discussed by 

Selinsky et al. 194.  Figure 22 illustrates this protein and its detected cavity.  The inset at 

the upper left shows the relatively small opening (calculated as 22 Å2 by our algorithm) 

while the inset at the lower left extracts the cavity, ligand and surrounding residues 

(Pro86, Ile89, His90, Leu93, Met113, Val116, Arg120, Phe205, Val344, Ile345, Tyr348, 

Val349, Leu352, Ser353, Tyr355, Leu357, Leu359, Phe381, Leu384, Tyr385, Trp387, 

His513, Phe518, Glu520, Met522, Ile523, Glu524, Gly526, Ala527, Ser530, 
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Figure 22. Well-enclosed Cavity: Prostaglandin H2 synthase. Prostaglandin H2 
synthase (1eqg) examined with the VICE algorithm and displayed with MOLCAD and 
Sybyl.  a) The protein Connolly surface is displayed with opaque rendering.  The small 
opening to the cavity is indicated by the red arrow; b) the ligand, ibuprofen rendered in 
CPK (space-filled), and the residues lining the cavity are shown. The yellow translucent 
surface illustrates the extents of the cavity.  The protein is rendered with a translucent 
Connolly surface; c) shown as in b) but displaying the entire protein.  
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Leu531 and Leu 534).  The cavity volume is estimated at 814 Å3 of which only 214 Å3 

are occupied by ligand.  We have not included any volume contribution from water in 

calculated volume estimates as the number of water molecules detected by x-ray 

crystallography varies greatly with crystallographic resolution 195.  

 

Similarly, the anti-malarial compound fosmidomycin binds to IspC (PDB 1onp) 196 and 

the detected cavity is well-defined (Figure 23), surrounded by residues Ser151, Glu152, 

Gly185, Ser186, Gly187, Gly188, Trp212, Ser213, Ile218, Ser222, Asn227, Lys228, 

Glu231, Ser254, Met276 and a Mn ion.  Here, the binding site is deeply buried with a 

volume of 342 Å3, while the volume of fosmidomycin is 136 Å3 of which 127 Å3 

occupies the active site.  Most cavities in this class have opening surface areas that are 

about 10% or less of the total cavity surface area and have occupancy factors of around 

35-50% (See Table 4). 
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Figure 23. Well-enclosed Cavity: IspC.  IspC (1onp) examined with the VICE 
algorithm and displayed with MOLCAD and Sybyl.  a) The protein Connolly surface is 
displayed with opaque rendering.  The relatively small opening to the cavity can be seen; 
b) the ligand, the anti-malarial compound fosmidomycin rendered in CPK, and the 
residues lining the cavity are shown. The yellow translucent surface illustrates the extents 
of the cavity.  The protein is rendered with a translucent Connolly surface and the space-
filling magenta sphere is the manganese ion; c) shown as in b) but displaying the entire 
protein.   
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4.3.4 Groove/Cleft on the Surface of a Protein 

The more shallow cavities and surface grooves are also potential sites for binding of 

drugs, ligands, proteins and other biomacromolecules.  Identification and size 

characterization of surface pockets and occluded cavities are often the initial steps in 

protein structure-based drug design.  The most important of these binding pockets are 

generally found to be particularly large and deep clefts.  While internal cavities are fairly 

easy to define as they generally correspond to well-enclosed regions completely bounded 

by surrounding atoms, in many cases interactions between protein and small molecule 

tend to involve what can appear to be a nearly planar surface on the surface of the 

protein.  However, on the nano-scale protein surfaces are irregular with many clefts and 

grooves of varying shapes and sizes, and it is often difficult to define the boundaries of 

these shallow pockets.  In particular the “open” boundary at the mouth is ambiguously 

defined even in the best of circumstances with this class of protein cavity.  Our algorithm, 

as described in Figure 15-21, defines this boundary in terms of a user-adjustable 

parameter that represents the ratio of vectors finding the cavity wall over all vectors for 

each grid point.  For this work we used the default value of 0.5 for this parameter.  Most 

shallow cavities can be characterized one key metric: they generally have opening cross-

sectional areas (Table 5 ) of about 30% of the total cavity surface area.   
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One example of a shallow cavity on the surface of protein is illustrated with cytokine 

interleukin-2 (1m48) 197 in Figure 24.  Here, the binding site is mapped to a shallow 

groove on the surface of protein.  This particular protein is a symmetric homodimer so 

that there are two essentially identical binding sites.  Cytokine interleukin-2 has been 

implicated as one of the principal mediators in proliferation and differentiation of 

activated cells in an immune response.  It attaches through its surface to the trimeric IL-

2R receptor, thereby triggering an immune response.  Although the binding pocket is 

actually present as a surface cleft divided by a ridge, the cavity detection algorithm was 

able to capture both sides of the pocket.  Interestingly, while a large portion of the ligand 

hangs out of the pocket, the two terminal ends are buried within the pocket.  
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Figure 24. Shallow Cavity on Protein Surface: Cytokine interleukin-2.  The cytokine 
interleukin-2 dimer (1m48) has one essentially identical shallow cavity binding site on 
each of the two chains.  a) The inhibitor Ro26-4550 is bound in the cavity of chain A: the 
cavity extents are displayed as the orange contour volume.  Both ends are well-bound but 
much of the middle of the ligand is external to the cavity; b) both sites are displayed in 
this view of the entire protein.  
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In another example, as illustrated in Figure 25, a cavity was identified on the surface of 

the BCL-XL protein (1bxl, 2yxj) 198,199, a pro-survival protein whose function is regulated 

by the binding of anti- or pro-apoptotic factors.  Several anti-apoptotic proteins can bind 

to the BH3 domain of BCL-XL in tumor cells where it is overexpressed.  These 

interactions increase the survival rate of the cancer cell and may contribute to drug 

resistance.  In contrast, pro-apoptotic proteins such as BAK can induce apoptosis by their 

binding to the BH3 domain; thus, the BH3 domain on BCL-XL could be exploited as an 

attractive drug target in cancer chemotherapy.  The BH3 domain has a largely 

hydrophobic surface with an estimated volume of 1300 Å3.  The lower left inset of Figure 

25 shows BAK bound to the BH3 domain of BCL-XL (1bxl).  The associated cavity is 

indicated in yellow.  However, a smaller sub-pocket (indicated in orange) can also be 

identified on the BH3 domain that binds small molecule modulators such as ABT-737 

(2xyj) as shown in the upper right inset of Figure 25.  The overlap of these two sites is 

shown in the central portion of Figure 25, and suggests that the bound ABT-737 ligand 

would block the binding of BAK.   

 

Exploitation of such cavities and sub-pockets at the interface between proteins could have 

important implications in drug discovery as more is learned about the role of protein-

protein interactions in biological processes.  
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Figure 25. Shallow Cavity on Protein Surface: BCL-XL.   Two structures of the BCL-
XL protein with BAK protein and inhibitor ABT-737 bound within its binding cavity.  a) 
BCL-XL protein (1bxl) with sixteen residue BAK protein (red capped stick 
representation) bound within the surface cavity (yellow translucent envelope); b) BCL-
XL protein (2yxj) with ABT-737 inhibitor (blue capped sticks) bound in a relatively 
smaller sub-pocket (orange translucent surface); c) overlap superposition of 1bxl and 
2yxj structures showing the correspondence of the two pockets.  Cavity extents illustrated 
with yellow and orange translucent envelopes. 
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 4.3.5 Cavity Formed at a Protein-Protein Interface  

            Next, we consider examples of cavities at protein–protein interfaces. These interactions 

have an important role in many biological processes and cavities at the interface of 

protein-protein dimers offer particularly attractive, but as yet largely unrealized, 

opportunities for therapeutic intervention.  However, uncertainties owing to the structural 

changes due to domain movement upon binding and the often insufficient knowledge of 

well-defined binding pockets, coupled with the irregular shape and size of typical 

protein–protein interfaces, have made it difficult to design inhibitory ligands that can 

modulate protein-protein interactions.  Although a large surface area is usually buried on 

each side of the actual interface, there is often only a relatively small cavity or groove 

where a small molecule can fit and thus inhibit the protein-protein interaction.  Our cavity 

detection algorithm is able to identify and delineate these binding sub-pockets on large 

interfaces as described in the section above. Detailed information related to volume, 

surface area and chain, residues that line the pocket is also illustrated (see Table 6). 
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 However, in some cases, cavities at protein-protein interfaces can be observed, either at 

the joint between two subunits of the same protein or for a protein-protein complex.  In 

one example, for αβ-tubulin (1z2b) (Figure 26) 200, our cavity detection algorithm defined 

the binding envelope at the wide interface between protein-protein units.  Tubulin is the 

basic building block of microtubules, critical for mitosis and cell division, and an 

important target for anti-cancer drugs.  

 

Tubulin exists as a heterodimer and joins end-to-end to form a protofilament with 

alternating α and β subunits. The staggered assembly of 13 protofilaments forms hollow, 

cylindrical microtubule filaments.  Three distinct binding sites have been identified on 

tubulin heterodimers for the taxol, colchicinoids and vinca classes of drugs.  Although 

Taxol binds wholly on the β subunit, the colchicine binding site lies at the intradimeric 

interface of α and β subunits of tubulin and the vinblastine binding site is located at the 

interdimeric interface of αβ-subunits. The colchicine and vinblastine binding sites have 

been difficult to map as these binding pockets are poorly demarcated between the subunit 

interfaces and the crystallographic resolution is rather poor at 3.58 Å.  However, our 

algorithm was able to clearly identify and delineate binding envelopes at these subunit 

interfaces: the colchicine binding site (Figure 26, left inset) has a volume of 842 Å3 with 

an opening directly at the α-β interface with a estimated opening area of 28 Å2; and the 

vinblastine site cavity has an estimated volume of 1457 Å3 and an opening of 381 Å2.  
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Figure 26. Cavity at Protein-Protein Interface.  a) The tubulin protein (1z2b) with 
colchicine and vinblastine binding sites at interfaces between the α and β subunits.  The 
tubulin polymer is rendered in ribbon and tube with the α subunits shown in red and β 
subunits shown in blue; b) inset shows the colchicine binding pocket (yellow contour) at 
the intra-dimeric interface of the αβ-subunit; c) inset shows the vinblastine binding site 
(orange contour) at the inter-dimeric interface between αβ-subunits.  
 
 
 

 



www.manaraa.com

   

 124

 
 

4.3.6 Cavity Formed at a Protein-Polynucleotide Interface 

Protein-DNA/RNA interactions primarily are related to regulation of gene expression and 

are thus associated with important functions.  Cavities or pockets formed by proteins at 

protein-nucleic acid interfaces are designed to mediate interactions and allow sequence-

specific recognition of a gene.  Each nucleic acid binding motif on a protein consists of a 

specific binding pocket that recognizes and stabilizes the DNA/RNA.  To bind in this 

fashion a protein must make contact with the nucleic acid in such a way that the 

nucleotide sequence can be recognized. Ligands that can interfere with this recognition, 

either by occupying the putative nucleic acid binding site and blocking DNA/RNA 

binding, or by exploiting cavities formed in the protein-polynucleotide complex, may be 

therapeutically significant.  As an example of the latter strategy, Figure 27 shows binding 

pockets detected on the 30S ribosomal subunit (1fjg) 201.  Three well-defined major 

cavities are detected indicating the binding sites for the antibiotics spectinomycin, 

paromomycin and streptomycin.  The binding pocket for spectinomycin, which inhibits 

elongation factor G catalyzed translocation of the peptidyl-tRNA from the A-site to the 

P-site, has a volume of 633 Å3 with spectinomycin completely enclosed within the cavity. 

The majority of interactions are with RNA bases C1063, G1064, C1066, G1068, C1069, 

A1191, C1192, G1193, U1194, G1386, G1387, with protein residues Ala121 & Gly 122 

lining the cavity envelope.  Paromomycin, an aminogycoside, binds in the major groove 

at the decoding center on H44 and induces errors in translation by increasing the affinity 

and stability of tRNA for the A-site.   
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Figure 27. Cavity at Protein/Polynucleotide Interface.   a) The 30S ribosomal subunit 
(1fjg) is rendered as ribbon and tube, except within 20 Å of binding region where a 
MOLCAD surface display is shown to highlight the binding pockets for the antibiotics 
spectinomycin, paromomycin and streptomycin; b) the binding site for paromomycin 
(orange envelope) and streptomycin (yellow envelope) are illustrated.  The antibiotic 
drugs are rendered in spacefill; c) the binding pocket for spectinomycin (yellow 
envelope) is illustrated. 
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 The volume of this cavity is 1605 Å3 and it is lined by bases C1404, G1405, U1406, 

C1407, A1408, C1409, G1410, G1488, G1489, C1490, G1491, A1492, A1493, G1494, 

U1495, C1496, G1497 and protein residue Lys47.  Adjacent to this binding pocket is a 

third cavity which binds streptomycin, a drug that inhibits protein synthesis by interfering 

with the initial selection and proofreading of tRNA.  The volume of the predicted binding 

pocket is 988 Å3 with numerous nucleotides from 16S RNA and residues from the S12 

protein lining the binding envelope. While a limited numbers of base pairs are involved 

in recognition and stabilization, designing an inhibitor that binds at an interface must 

involve sufficient nucleic acid and protein contact so that the ligand fits snugly.  

 

Detailed analysis of cavities formed at the protein-polynucleotide was carried out and 

information retrived is tabulated in table 7. 
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4.3.7 Flexible Cavities with Loop or Domain Movements 

All proteins have an intrinsic flexibility that is required for a wide range of biochemical 

processes in catalysis, regulation, and protein assembly. However, in some cases 

experimental evidence has indicated that the shape and size of the ligand binding 

envelope may change due to domain movements; e.g., molecular recognition and ligand 

binding is induced by large loop movements where flexibility in the protein main chain 

influences the ligand binding202.  Ligand binding may involve a wide range of structural 

changes in the receptor protein, from hinge movement of entire domains to small side-

chain rearrangements in the binding pocket residues.  Many protein functions in fact 

involve conformational transitions that involve opening and closing of relatively rigid 

parts of that protein about flexible joints.  The analysis of side chain flexibility gives 

insight valuable for improving docking algorithms and for ligand design when domain 

movement and/or loop flexibility opens and closes the binding pocket.  Instead of well-

defined binding pockets, most proteins that have ‘induced’ domain movement lack deep 

clefts or clearly shaped binding pockets.  Thus, this is an interesting case study for cavity 

detection – where the change in the size and shape of binding pocket due to domain 

movement is calculated by comparison between pairs of holo and apo proteins (See Table 

8).   
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 Figure 28 shows the example of citrate synthase, 5cts 203 and 5csc 204, which are the apo 

(unliganded) and holo (ligand-bound) forms with cavity volumes of 439 Å3 and 967 Å3, 

respectively. The bound ligand, oxaloacetate, which has a volume of 704 Å3, appears to 

induce this large domain movement in the enzyme and causes binding pocket residues to 

undergo side-chain conformational changes as well as changes in overall shape.   

 

Residues His238, Asn242, Leu273, His274, Val314, Val315, Gly317, Tyr318, Gly319, 

His320, Ala321, Arg329, Gln364, Ala367, Ala368, Asn373, Asp375, Phe397 surround 

the binding pocket in the closed structure, while only residues His238, His274, His320, 

Arg329, Asp375, and Phe397 line the unliganded pocket.  
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Figure 28. Flexible Cavity with Loop or Domain Movement. The citrate synthase 
protein, 5cts (red) and 5csc (blue), the apo (unliganded) and holo (ligand-bound) forms, 
respectively, is illustrated.  A relatively smaller binding pocket is detected in 5cts (orange 
envelope); however, the native ligand oxaloacetate (green capped sticks) induces a 
domain movement that significantly alters the shape and size of the binding pocket 
(yellow envelope) in 5csc.   
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4.3.8 Multi-Domain Proteins with Channels or Tunnels 

Understanding the structure and function of channels and pores within biomolecules is 

important, e.g., to a large number of critical disease states and in compensating for drug 

resistance due to efflux.  Channels and pores and other passages across cell membranes 

facilitate the movement of small molecules and ions.  These transmembrane proteins, 

such as ion channels, transporters and G-protein coupled receptors, are exceptionally 

significant drug targets.  Apart from this, channels and tunnels also facilitate the access 

and exit for substrates/products in some catalytic processes.  Channels/pores are often 

dynamic in nature and can be relatively flexible in size and shape and access through 

them is often regulated by small molecules binding to an active site.  Thus, while many of 

the available algorithms and associated programs developed to detect and characterize 

binding pockets are successful with well-enclosed pockets and surface grooves, for the 

most part these procedures fail to detect long, twisted tunnels connecting the interior of a 

binding pocket to the exterior environment.  In fact, it is surprisingly difficult 

mathematically to differentiate between true channels and tunnels and random voids if 

the tunnel has a narrow diameter or constriction point(s). 

 

With the recent availability of crystal structures for large membrane-bound proteins, 

detection and mapping of the interior of these channels can give insight into the binding 

process for design and development of more selective drugs.  Our cavity detection 

algorithm provides sufficient flexibility and interactivity to map binding sites as well as 

the channels and tunnels through a protein (See Table 9).   
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In the example illustrated in Figure 29, the KcsA potassium channel (1j95) 205, we 

applied our cavity detection algorithm to first identify the binding pocket inside the 

channel, which is occupied by tetrabutylammonium in this structure.  This was easily 

detected with the program’s default parameters, e.g., a grid resolution of 1.0 Å.  Next, by 

decreasing the grid spacing to 0.3 Å, the program successfully identified and delineated a 

long, narrow porous channel traversing the entire length of the protein’s transmembrane 

axis.  It should be noted that this latter calculation was resource intensive due to the very 

large number of surveyed grid points, but this level of computation was necessary in 

order to adequately sample the protein structure.   The total volume of channel was 

calculated to be 1342 Å3 with the binding cavity of 615 Å3, while the 

tetrabutylammonium occupies 168 Å3 inside the binding cavity of the channel and is 

well-enclosed by hydrophobic residues.  
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Figure 29. Channels and Tunnels.   a) The KscA K+ ion channel (1j95) plotted with 
translucent MOLCAD surface.  The binding pocket at the center of the channel is 
illustrated with an orange contour map; its tetrabutylammonium inhibitor is rendered in 
CPK (space-fill).  The channel, traversing the entire length of the protein, is highlighted 
with the yellow contour map.  Detection of the channel required calculations with a very 
large number of grid map points and high resolution.  The potassium ions are rendered as 
the red spheres; b) expanded view of the inhibitor binding cavity. 
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4.3.9 Multiple Cavities and Allosteric Binding Pockets  

The detection of auxiliary binding sites is becoming increasingly crucial as many proteins 

have more than one biochemical role and are likely to employ separate binding sites in 

performing these distinct biochemical tasks.  Allosteric binding pockets may offer 

additional recognition sites that modulate the catalytic function of a protein.  These 

auxiliary binding pockets may be located far away from the catalytic site, as in case of 

glycogen phosphorylase, or may overlap with the active site.  Traditionally, allosteric 

sites were considered to be distal binding sites for molecules that modulate the function 

of a protein by a feedback mechanism.   

 

While the mechanisms of allosteric modulation of proteins have been extensively studied, 

discovery efforts to efficiently identify and characterize these binding sites continue as 

exploiting them may lead to development of entirely new classes of drugs.  However, it 

can be a non-trivial matter to find and characterize allosteric binding sites when these 

sites are present as auxiliary pockets overlapping with the main active site.  Figure 30 

illustrates an example of an allosteric site on glycogen phosphorylase b (1c50) 206.  The 

crystal structure shows an allosteric binding site for the co-crystallized molecule 

CP320626.  Our program identified this binding site with a volume of 431 Å3 close to the 

AMP binding site with a volume of 728 Å3. The main PLP catalytic site, with a volume 

of 849 Å3, is about 30 Å distant from the allosteric site. 

 

Table 10 shows detailed analysis of other proteins with auxillary and allosteric pockets. 
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Figure 30. Auxiliary and allosteric sites.  The glycogen phosphorylase b (1c50) with 
multiple binding pockets. a) A close-up view of the allosteric/auxiliary site.  The AMP 
cofactor (red sticks, green cavity contour) and allosteric site (yellow contour) with 
inhibitor CP320626 (blue sticks) are in separate subsites of the overall surface groove 
(orange contour); b) the main catalytic site (cyan contour) is bound with PLP and is quite 
deeply buried in the protein.  
 
 

 



www.manaraa.com

   

 138

 
 

 

 T
ab

le
 1

0:
 P

ro
te

in
ca

vi
ty

 d
at

a 
fo

r p
ro

te
in

s w
ith

 m
ul

tip
le

 c
av

iti
es

 a
nd

 a
llo

st
er

ic
 b

in
di

ng
 p

oc
ke

ts
. 



www.manaraa.com

   

 139

 

 4.4 Summary and Outlook 

 The identification, delineation and visualization of protein active sites is a critical facet 

of drug design.  These site topographies play crucial roles in molecular recognition. 

Proteins may have many pockets and cavities of various sizes, some of which whose 

function, e.g., protein-protein interaction, is unknown; it is possible that some may be 

usefully exploited with selective molecules that bind and modulate that protein’s 

function.  Thus it is important to be able to characterize these binding pockets, 

quantitatively and qualitatively. This algorithm and program provides a simple and 

interactive tool for locating and delineating all the cavities, pockets, grooves, clefts and 

tunnels of a protein whose structure is known.  In most cases the default parameters 

produce good results very rapidly because the majority of the calculations are performed 

with integer arithmetic.  Thus, we believe that this tool could be a useful starting point for 

virtual screening by automatically identifying potential binding sites in a first pass.  Of 

course, more reliable and biologically meaningful results will be obtained if the user can 

focus on particular regions or features by selecting one or more of the pockets and 

investigating them in detail by adjusting a relatively small number of calculational 

parameters.   

 

A second major advantage of this program is that it calculates a fairly extensive set of 

metrics describing a binding pocket and its occupants.  Cavity volumes, cavity surface 

areas, and lists of atoms, residues and/or chains lining the binding pocket can be 

retrieved.  The estimated cross-section surface area of cavity openings is particularly 
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interesting as it may suggest methods to describe the maximum size of ligands to enter a 

site. 

 

With this rapid and robust cavity algorithm in place, we are exploring virtual screening 

and docking algorithms that use property-encoded cavities, e.g., the HINT complement 

map, as first stage targets.  Such cavity maps would be inherently suited for grid-based 

pose generation and scoring. 
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CHAPTER 5 

 

Complexity in Modeling and Understanding Protonation States: 

Computational Titration of HIV-1 Protease Inhibitor Complexes 
 

5.0 Abstract 

The computational titration algorithm based on the “natural” HINT (Hydropathic 

INTeractions) force field is described.  The HINT software model is an empirical, non-

Newtonian force field derived from experimentally measured partition coefficients for 

solvent transfer between 1-octanol and water (LogPo/w). The titration algorithm allows the 

identification, modeling and optimization of the multiple protonation states of residues 

and ligand functional groups at the protein-ligand active site.  The importance of taking 

into account pH and ionization states of residues, which strongly affect the process of 

ligand binding, for correctly predicting the binding free energy is discussed.  The 

application of the computational titration protocol to a set of six HIV-1-cyclic inhibitor 

complexes is presented and the advance of HINT as a virtual screening tool is outlined.  
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5.1 Introduction  

A typical problem in modeling biomolecular systems or molecular recognition systems is 

accurately modeling the energetics of binding. Thermodynamic analyses of protein-

ligand interactions not only give vital insight into the free energy changes of the system, 

but also elaborate whether an interaction is enthalpy or entropy driven207-209.  Calculation 

of binding free energy involves evaluation of both enthalpic and entropic contributions 

and forms an integral part of structure-based drug design protocols210,211.  To this end, 

computer simulations have strived to predict binding free energy and concomitantly 

interpret experimental data.  The fundamental idea behind development of robust 

computational models was to incorporate as much of the physiochemical parameters 

defining protein-ligand interactions as possible212.  These models can contribute 

significantly to the understanding of the structural and energetic basis of biomolecular 

interactions, with the goal of de novo predicting the binding free energy of protein-ligand 

complexes.  

 

Generally, enthalpic contributions are estimated by theoretical methods, knowledge-

based potential functions, or parameters derived from experimental data213.  The force-

fields used for calculations of free energy and intermolecular interactions assume that 

steric and electrostatic forces are sufficient to account for the observed biological 

interactions213.  However, these terms alone are never sufficient for accurate prediction of 

biomolecular interactions as they do not always include solvation/desolvation effects.  

The entropic contributions to binding are much less well-defined and often poorly 

quantitated or even ignored in most cases.  Most approaches sum up these interactions 
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separately as distinct enthalpic and entropic contributions, whereas, in reality, the ligand-

protein recognition is a concerted event and thermodynamic quantities cannot be just 

simply added up214.  The phenomenon of solvation/desolvation within the protein active 

site, resulting in hydrophobic interactions and other phenomena, has been particularly 

difficult to model computationally.  However, developments in free energy calculation 

over the past several years have made significant progress towards this goal215,216.  

Among the methods currently available to calculate free energy, those based on complex 

and time-consuming molecular dynamics simulations, with explicit consideration of 

water molecules, have been shown to correlate fairly well with free energy.  Free energy 

perturbation (FEP) calculations, based on statistical mechanics, can predict the free 

energy of a system by analyzing ensemble averages (calculated by molecular dynamics 

(MD) or Monte Carlo (MC) simulations) and treating solvent molecules and ions 

explicitly217.  Unfortunately, besides being computationally expensive, calculation of free 

energy using MD or MC is plagued by errors and problems from a variety of sources218.  

Thus, computational time and uncertainty is compounded for complex biomolecular 

systems with solvents and counterions218,219.  

 

∆Gbinding values computed via sophisticated simulations often do not correlate well with 

experimental binding measurements.  This could be due to several reasons.  First, it is 

becoming common practice in the drug discovery community to use assays generating 

IC50s rather than equilibrium constants, and computational scientists often 

interchangeably use IC50 instead of Ki or Kd to calculate free energies.  Furthermore, the 

experimental binding data itself present uncertainties, i.e., there are often differences of 
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one order of magnitude (corresponding to about 1 kcal mol-1) between inhibition data 

collected in different laboratories, and thus they are not always of a quality to enable 

accurate quantitative correlations with computational data.  On the other hand, structural 

data available from x-ray crystallography and NMR has undeniably fostered an 

understanding of the biological complexity of molecular recognition.  However, often 

only partial agreement between experimental and theoretical binding energy data based 

on crystal structures has been observed.   

 

It is difficult to correlate solution binding data and crystallographic structural data 

because of a number of inherent experimental limitations.  Biomolecular interactions are 

sensitive to subtle changes in experimental conditions such as pH, buffer, ionic strength, 

and temperature under which data are collected220.  While the pH used for making the 

binding measurements is generally perceived as the pH at which binding takes place, that 

pH may not actually be the optimum pH for binding.  This discrepancy is magnified 

when crystals for x-ray analysis are grown under a still different pH condition.  Unless at 

very high resolution, an x-ray structure by itself reveals little direct information regarding 

the protonation states of the active site residues in a protein.  As protein-ligand specificity 

and stability are known to be sensitive to structural details, presumably because 

protonation states of ionizable residues and the details of the hydrogen-bonding network 

are very important for optimum interaction, it is imperative to identify, characterize and 

understand the protonation states of residues.   Even a change in the ionization state of a 

single residue or ligand functional group may have a profound effect on the results for 

structure-based energy calculations.   
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In general, molecular association depends on the ionic strength and pH of the solution220.  

Protein crystals may contain between 30% and 70% solvent221, which includes the buffer 

solution as well.  These solvent molecules and ions are distributed among the protein 

molecules of the crystal lattice.  However, due to their inherent electrostatic properties, 

they may distribute themselves in different solvent channels depending on the nature of 

the residues lining these solvent pockets.  Thus, pH influences ligand binding both 

directly, by changing the hydrogen-bonding character of ionizable site residues, and 

indirectly, by altering the shape and properties of the site with specifically bound solvent 

molecules222,223.  Another significant factor in quantitative estimation of interaction 

strength is the microscopic dielectric constant, which is almost never known224.  While 

many approximations can be made for the dielectric constant of the protein interior225,226, 

the most accurate modeling of dielectric effects within proteins requires consideration of 

the atomic polarizabilities of the heterogeneous protein and the solvent (both water and 

counter ions)227,228.  However, the size of a typical protein-ligand system renders 

approaches of this nature very computationally expensive; thus, simplified models that 

use macroscopic dielectric models – uniform or distance dependent – are generally 

applied229. 

 

In order to accurately predict binding free energies, it is fundamental to take into account 

pH, ionization and entropic contributions for virtual screening experiments.  However, in 

many biomolecular systems the lack of extensive binding and inhibition data as a 

function of pH limits the likelihood of good correlation between calculated and measured 
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binding data.  In this chapter we have examined x-ray structures of HIV-1 protease in 

complex with several cyclourea and cyclic sulfamide inhibitor analogs.  The binding of 

ligands to a biological macromolecule is made even more complicated with the presence 

of multiple ionizable groups, and the HIV-1 protease/ligand system has several230.  

Existing modeling techniques are insufficient to characterize atomic level details of 

binding and do not often consider the multiple protonation states and ensemble of 

protonation states that can exist in these systems, many of which are quite similar in 

energy. We have applied our computational titration protocol, based on HINT 

(Hydropathic INTeraction), to analyze and identify the best protonation models for these 

complexes.  Our main interest in developing the computational titration algorithm is its 

ability to identify and optimize all possible protonation states so that rational models with 

atomic details can be constructed and applied to modeling ligand binding energetics. 

 

5.2 Materials and Methods 

Optimized molecular models of the HIV-1 protease-ligand complexes in this work were 

taken from our previous study on the contribution of water molecules to the energetics of 

HIV-1/ligand binding101.  In that study, the GRID program was used 185 for identifying 

and placing water in favorable locations that were unoccupied due to crystallographic 

uncertainty.  In the cyclic urea complexes, only complex 1AJX had crystallographically 

detected waters 313 and 313’, while these waters were not experimentally reported for 

complexes 1DMP and 1QBT and were positioned with GRID.  However, in case of 

cyclic sulfamide complexes, crystallographic water 313 and 313’ were experimentally 
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confirmed for the three complexes 1AJV, 1G35 and 1G2K except for water 313’ on 

1G2K, where it was positioned using GRID.  

 

The modeling programs Sybyl 7.2 (www.tripos.com)78 suite and HINT 3.11S were used 

in this study.  In the HINT computational titration protocol, the protein, ligand and water 

were partitioned as distinct molecules: only hydrogen atoms deemed “semi-essential”, 

i.e., only those attached to polar atoms (N, O, S, P) and those attached to unsaturated 

carbons were explicitly considered in the model and assigned HINT constants.  The 

inferred solvent model, where each residue is partitioned based on its hydrogen count, 

was applied.  The solvent accessible surface area for the amide nitrogens of the protein 

backbone were corrected with the “+20” option.  All Asp, Glu and His residues within an 

8 Å radius of the ligand and the ionizable functional groups on the ligand (amine, 

phosphine, carboxylate groups) were selected for titration.  In this study only aspartates 

were present at the HIV-1 active site and only one ligand had a titratable amine.  

 

Optimization of each protonation state model focuses on exhaustive optimization of the 

R–XHn bond dihedral angles that are exhaustively optimized by forcing rotation through 

the entire 360°.  This rotation positions the polar hydrogens for optimum hydrogen 

bonding and intermolecular HINT energy score.  The procedure targets primary amine, 

hydroxyl and thiol groups on both protein and ligand.  Note that the –OH on protonated 

carboxylate groups are also optimized in this way.  In His the imidazole ring is flipped to 

optimize hydrogen bonding, as are the terminal amides of Asn and Gln.  All the possible 

models were composed and scored using equation 1.  Finally, HINT scores were plotted 
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as a function of pH for all the models.  Normal and Boltzmann-weighted averages were 

then obtained for each protonation level.   

 

5.3 Results and Discussion  

5.3.1 The Computational Titration Algorithm 

The Computational Titration (CT) algorithm is based on the empirical HINT 

(Hydropathic INTeractions) free energy non-covalent forcefield92, and involves modeling 

of optimum ionization conditions at the binding site99,192.  The Computational Titration 

methodology allows exploration of the ionization states of active site residues and ligand 

functional groups as a function of protonation.  This novel method, implemented in the 

HINT software, involves building and scoring of distinct protonation models, i.e., a 

defined ionization state for each relevant residue or ligand functional group.  First, all the 

possible ionization states of residues and ligand functional groups are enumerated with 

user choices of residue types192,231,232.  The illustration of Figure 31 indicates how this is 

accomplished.  Each box represents a potential position for a proton.  With no added 

protons there is only 1 model, but with one added proton there are 14 unique models, and 

so on.  In the example of Figure 31, one of the ligand’s amines is protonated and one of 

the two carboxylate oxygens of Asp125 is protonated.  The acidic residues Asp and Glu 

are usually subjected to titration; the basic residues Lys and Arg are usually kept in their 

protonated states, while His is normally selected for titration.  The CT algorithm further 

allows selection of Tyr and Cys for titration in cases where exploring the ionization of 

these residues is desired.   
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Figure 31. Protonation model. Schematic representation of active site ionizable residues 
and ligand functional groups subjected to computational titration; in this case for complex 
1DMP.  Boxes indicate potential protonation sites, i.e., potential positions for protons.  
The sole protonation site on amines is indicated by a solid box, whereas the two potential 
protonation sites on aspartates are indicated by dotted boxes.  (Protons can be placed on 
either carboxylate oxygen, but not both).  The illustrated model has two added protons: 
one of the two amine groups on the ligand and one of the two carboxylate oxygens on 
Asp125 are protonated (“occupied” solid boxes); the other carboxylate oxygen is 
unavailable for protonation. 
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The analogous functional groups on the ligands, i.e., carboxylic acids, amines, aromatic 

alcohols and thiols, are user-selectable for titration.  Cofactors or water molecules are 

also taken into account. The HINT Titration algorithm identifies and exhaustively 

optimizes the water molecules that are in potentially bridging positions, i.e., within a 4Å 

radius from both protein and ligand, and thus able to interact with both98.  During the 

computation, each model corresponding to a particular protonation state is built and then 

optimized.  Here, all rotatable bonds involving polar hydrogens (R-XHn) – including 

those newly created via protonations such as the -OHs of carboxylic acids – at both the 

protein active site and on the ligand will be examined and exhaustively optimized192 to 

maximize hydrogen bonds formation, i.e., by rotation of these bonds through the entire 

360°.  In addition, Asn and Gln side chain amides are rotated ± 180° and oriented for 

optimal interaction.  Simply, this algorithm creates rotameric models that are 

isocrystallographic in that all of the models should fit within the experimental electron 

density envelopes and be indistinguishable.  Next, the algorithm calculates the HINT 

score of each rotameric model and creates a table of HINT score as a function of site 

charges.  From that a “titration curve” can be calculated.  To translate the HINT scores to 

free energy, we used the equation102: 

 

ΔG = -0.00195 HTOT – 5.543     (11)  

 

Finally, the statistical thermodynamics Boltzmann energy partition function is applied to 

each site charge to calculate population-weighted averages of binding free energy for 
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each site charge.  The Maxwell–Boltzmann distribution from statistical mechanics forms 

the basis of understanding classical molecular phenomena in terms of how energy is 

distributed in an average sample of states.  Mathematically, the Boltzmann distribution 

can be expressed in the form: 

 

f (E) = Ae-E/kT                (12) 

 

It gives the probability of any molecule existing in an energy state E as a function of its 

free energy.  In our case, it elucidates the possibility of an ionization state existing in a 

particular energy state as a function of that state’s free energy.  The probability decreases 

exponentially as the free energy of the state increases.  The Boltzmann average energy 

weights the energies of each state by these probabilities and is more representative of the 

overall ensemble energy than a normal average. 

 

5.3.2  Ionization State Ensemble of HIV-1 Protease.  

HIV-1 protease, which has been widely studied because of its crucial role in propagation 

of the AIDS virus, but also as a prototypical target enzyme vital for proteolytic cleavage 

of viral proteins, is a homodimeric aspartyl protease with 99 amino acid residues in each 

subunit230.  The active site of the enzyme is situated at the interface between the two 

monomers.  A conserved water molecule, water 301, located at the HIV-1 protease 

symmetry axis and bridging the two subunits, has been observed in all HIV protease-

ligand complexes hydrogen bonded to residues Ile50 and Ile150 and to specific 

inhibitors.  Two other water molecules, water 313233 and its pseudo-symmetrical 313’, 
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are largely conserved and crystallographically detected in several HIV-1 protease-ligand 

complexes.  Initially, protease inhibitors, mostly linear peptide analogues, were designed 

such that they coordinated with water 301, linking them to the amide hydrogens of Ile50 

and Ile150 on the flaps of the protease dimer.  It was observed from several studies that 

this water molecule was crucial for the binding of these inhibitors234.  Thus, it was 

hypothesized that incorporation of the binding features of this structural water molecule 

into an inhibitor would energetically favor the binding interactions, increasing both 

binding affinity as well as specificity, since this structural water is unique to the aspartyl 

proteases and its substitution would be thermodynamically favorable at least partly due to 

increased entropy.   

 

Meticulous design of cyclic ureas as HIV-1 protease inhibitors specifically designed to 

displace water 301 was reported by Lam et al. in 1994235.  An essential feature of this 

class of analogues was the carbonyl oxygen that mimicked the hydrogen bonding features 

of the key water molecule.  Furthermore, the conversion of the flexible linear peptidic 

inhibitors into rigid, cyclic structures with restricted conformations provided additional 

favorable entropic benefits.  The preferred conformations and stereochemistry of these 

inhibitors were confirmed by x-ray crystallography235,236 (see Figure 32).  The crystal 

structures also revealed the hydrogen bonds between the ligand diol groups and the 

carboxylates of the catalytic aspartates (Asp25 and Asp125) that serve to anchor the 

scaffold in the active site.  However, since protons are normally not detected by x-ray 

crystallography, there is experimental uncertainty in the correct assignment of the 

protonation state of the catalytic dyad.   
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Figure 32 . Cyclic inhibitors of HIV-1 protease. 
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Careful analysis of all the possible protonation states can reveal more about the hydrogen 

bonding, including the possible existence of alternative networks of hydrogen bonds.  

This understanding could lead to the design of better inhibitors with greater binding 

affinity.  

 

In the current study we examined six HIV-1 protease-inhibitor complexes (see Figure 32) 

representing cyclic urea derivatives, SD146 (pdb code 1QBT237), DMP450 (pdb code 

1DMP238) and Aha001 (pdb code 1AJX239), and cyclic sulfamide derivatives, Aha024 

(pdb code 1G35240), Aha047 (pdb code 1G2K240) and Aha006 (pdb code 1AJV239).  For 

the cyclic urea analogs the carbonyl oxygen substitutes the position occupied by the 

oxygen of water 301 and thus forms hydrogen bonds with Ile50 and Ile150.  For the 

sulfamide analogs both oxygens of the sulfamide group are engaged in hydrogen 

bonding, with one oxygen hydrogen-bonded to the amide nitrogen of Ile50, and the other 

to the amide nitrogen of Ile150.  The diols are engaged in hydrogen bond networks with 

the catalytic aspartates.   

 

The HIV-1 protease active site presents a number of ionizable residues ideally suited for 

the computational titration protocol.  In the six HIV-1-ligand complexes ionizable 

residues located within 8 Å of the ligand were chosen for titration. The contributions of 

waters 313 and 313’ were also included in the calculations.  Note that, in a sense, water, 

being both a potential hydrogen bond donor and acceptor, may act as a pH buffer by re-

orientating after a protonation change on a neighboring functional group.  Thus, allowing 

it to freely rotate is an important component of the CT algorithm.  For all complexes, the 
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active site residues Asp25, Asp29, and Asp30 on chain A, and Asp125, Asp129 and 

Asp130 on chain B were selected for titration, while only the aminic groups on the 1DMP 

ligand were subjected to titration.  Thus, complex 1DMP has a total of eight ionizable 

functional groups – six on the protein and two on the ligand – yielding 2916 protonation 

models for building and scoring.  All the remaining complexes have six ionizable 

residues at the protein active site – yielding 729 protonation models. 

 

The results of the titration are shown in Figure 33 for each of the six HIV-1-ligand 

complexes investigated, where the HINT scores for each protonation model are plotted as 

a function of site charge.  The normal (arithmetic) average and the Boltzmann average 

(statistically weighted average based on site populations) are calculated for each site 

charge and the corresponding “titration curves” are obtained. Details of the CT 

calculations, i.e., number of models, normal average and Boltzmann average free 

energies, for each site charge are listed in Table 11 and 12.  With the exception of 

complex 1QBT, the titration curves for all the complexes show a bell-like shape, 

particularly evident in complex 1DMP (Figure 33b).  The 1QBT titration curve (Figure 

33a) has a different trend and while the free energy diminishes with protonation, the 

curve does not reach a minimum.  The ligands considered in this study have mostly 

similar chemical structure and size, but the ligand in 1QBT is bulkier with two 

substituted benzoimidazole groups.  This complex has the highest experimental binding 

free energy, but its calculated energy is underestimated by the HINT scoring function.  

This could be due to the structure of the ligand itself: possibly the protonation state of the 

benzomidazole groups that are not  
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Table 11.  Computational Titration results for the HIV-1 protease-cyclic inhibitor 
complexes: cyclic urea ligands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

a) HINT scores are converted into free energies using eq. (11). 

 

 

 

Cyclic Urea Ligands 

PDB Site 
Charge 

Model 
Count 

Normal 
Average a) 

[kcal mol-1] 

Boltzmann 
Average a) 
[kcal mol-1] 

-6 1 -4.67 -4.67 
-5 12 -5.02 -5.11 
-4 60 -5.39 -5.55 
-3 160 -5.72 -5.95 
-2 240 -6.01 -6.32 
-1 192 -6.29 -6.65 

1QBT 

0 64 -6.53 -6.91 
-6 1 -8.28 -8.28 
-5 14 -8.56 -10.09 
-4 85 -8.83 -11.50 
-3 292 -9.05 -11.79 
-2 620 -9.23 -11.82 
-1 832 -9.37 -11.61 
0 688 -9.49 -11.23 
1 320 -9.59 -10.69 

1DMP 

2 64 -9.71 -10.02 
-6 1 -7.40 -7.41 
-5 12 -7.68 -7.79 
-4 60 -7.81 -7.98 
-3 160 -7.93 -8.13 
-2 240 -7.99 -8.21 
-1 192 -8.00 -8.22 

1AJX 

0 64 -7.95 -8.10 
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Table 12.  Computational Titration results for the HIV-1 protease-cyclic inhibitor 
complexes: cyclic sulfamide ligands.  
                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) HINT scores are converted into free energies using eq. (11). 

  

 

Cyclic Sulfamide Ligands 

PDB Site 
Charge 

Model 
Count 

Normal 
Average a) 
[kcal mol-1] 

Boltzmann 
Average a) 
[kcal mol-1] 

-6 1 -6.65 -6.65 
-5 12 -6.69 -6.82 
-4 60 -6.89 -7.04 
-3 160 -6.95 -7.19 
-2 240 -6.98 -7.30 
-1 192 -6.97 -7.34 

1G35 

0 64 -6.93 -7.31 
-6 1 -6.36 -6.36 
-5 12 -6.57 -6.71 
-4 60 -6.78 -7.04 
-3 160 -6.92 -7.34 
-2 240 -7.03 -7.59 
-1 192 -7.10 -7.74 

1G2K 

0 64 -7.11 -7.67 
-6 1 -6.94 -6.94 
-5 12 -7.17 -7.35 
-4 60 -7.32 -7.66 
-3 160 -7.36 -7.89 
-2 240 -7.31 -8.05 
-1 192 -7.17 -8.15 

1AJV 

0 64 -6.93 -8.11 
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subjected to titration with our current algorithm.  The lowest free energy point determined 

by Boltzmann statistics – the minimum of the Boltzmann average titration curve – is what 

we define to be the “optimal” calculated free energy of binding representing the most 

favorable site charge, and by inference pH, for the specific ligand binding.  Figure 34 

illustrates the best model for HIV-1 protease in complex with the cyclic urea inhibitor 

1DMP, for which the titration curve is shown in Figure 33b.  While the “best” model is the 

one with the highest HINT score and presumably represents the protonation model 

corresponding to the best binding, it must be highlighted that there are many models with 

similar energy, and that it is likely that many of them coexist, especially at room 

temperature or above where binding assays are performed.  For 1DMP the best model 

corresponds to a -3 site charge, where the two amine groups on the ligand and only Asp 

125 on the protein are protonated.  As expected, Asp25 and Asp125 are engaged in a 

complex network of hydrogen bonds with the ligand’s diols.  The two ammonium groups 

on the ligand make hydrogen bonds with Asp29/Asp30/water313, and 

Asp129/Asp130/water313’, respectively.  The deprotonated Asp29 and Asp129 residues 

are also involved in hydrogen bonds with waters 313 and 313’, respectively. 

 

Experimental and calculated binding free energies for the examined HIV-1 ligand 

complexes are reported in Table 13.  The “optimal” site charges, i.e., the optimal 

protonation states that correspond to the optimal binding energies calculated by the 

Boltzmann statistical analysis, are also reported.  The results are encouraging, giving an 

average error of ± 2.5 kcal mol-1 in the prediction of binding energy, excluding the outlier  
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Figure 34. Complex 1DMP. Best model for HIV-1 protease in complex with a cyclic urea 
inhibitor (complex 1DMP). Ligand (ball and stick representation, colored by atom type), 
key active site residues (titratable aspartates in stick representation, colored by atom type; 
Ile50/150 stick representation, orange) and waters 313/313’ (stick representation, magenta) 
are highlighted.  Asp125 and the two amine groups on the ligand are protonated in this 
model.  The network of hydrogen bonds at the active site is illustrated with yellow dashed 
lines.   
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Asp129 
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Table 13: Experimental and calculated optimal (Boltzmann-weighted average) binding 
free energies for HIV-1 ligand complexes.  

 

 

 

 

 

 

 

 

 

 

 
a) Data from.185 
b) HINT scores are converted into free energies using eq. (11). 
c) 1QBT has not reached a true titration curve minimum.  This is the value at the curve’s lowest 

point, thus the “optimal” site charge may be at a more positive value (see Figure 33a).  

PDB 
Experimental 
∆Gbinding

a) 
[kcal mol-1] 

Optimal Calculated 
∆Gbinding

b) 
 [kcal mol-1] 

Optimal 
site 

charge 
1QBT -14.44 -6.91    0c) 
1DMP -12.99 -11.82 -2 
1AJX -10.79 -8.22 -1 
1G35 -11.06 -7.34 -1 
1G2K -10.82 -7.74 -1 
1AJV -10.52 -8.15 -1 
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complex 1QBT where the calculated energy is underestimated by the computational 

titration and which displayed an atypical titration profile (Figure 33a).  It is important to 

recognize that using an equation correlating HINT scores with binding energies that is 

calibrated for the specific analyzed system, instead of a general equation, would likely 

improve free energy prediction.   

  

5.4 Summary 

The computational protocol described here allows modeling of the multiplicity of 

protonation states, an often overlooked aspect of structure that has implications for drug 

discovery.  This approach allows generating hypotheses on the best model for binding, i.e., 

the model with protonation corresponding to the optimal binding energy.  The binding 

energy is evaluated with the HINT scoring function, which has previously been shown to 

fairly accurately predict binding free energies 101. In considering all the ionizable residues 

at the active site and modeling all the possible protonation states of residues and functional 

groups at this site, the computational titration algorithm represents fairly realistically the 

fluxional behavior of hydrogens in solvated biological systems. Hydrogens, in fact, are not 

static elements of a real biomolecular system. However, the computational titration 

procedure remains computationally expensive.  The number of models increases rapidly as 

the number of ionizable residues/functional groups in the binding pocket increases.  The 

inclusion of water molecules in the calculations makes these procedures even more time 

consuming. Nevertheless, we are committed to making this tool available and are currently 

developing a web-enabled version that will be publicly accessible. 
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CHAPTER 6 

 
 
 

Conclusions 
 
 

Computational tools have been extensively used in drug design and development from 

exploration of targets to corroborate experimental data. Computer aided drug design has 

been used to design new bioactive compounds with the aim of optimizing the overall 

pharmacodynamic and pharmacokinetic profile of a drug candidate and expediting the 

process of drug discovery. These techniques have substantially reduced the time and 

economic resources needed to discover novel drug candidates. This dissertation discussed 

the computational modeling aspects of drug design for anti-cancer agents with a focus on 

their interactions with potential targets and an emphasis on explaining and suggesting each 

drug candidate’s mechanism of action at the molecular level. Molecular modeling studies 

and development of computational tools that aid in drug design were also discussed. A 

novel de novo program for cavity detection and its application were described. The 

software tool identifies and delineates the active site within the protein. Another 

computational tool that allows identification, modeling and optimization of the multiple 
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protonation states of residues and ligand functional groups at the protein-ligand active site 

was also described and discussed.   

 

The compounds which bind to the colchicine site of tubulin have drawn considerable 

attention and studies indicated that these agents may influence microtubule dynamics by 

inhibiting polymerization. However, fundamental uncertainties in many aspects of 

microtubule biology and insufficient knowledge of the binding site interactions have 

undermined the possibility of identifying effective drugs with minimal toxicity. 

Nevertheless, the compounds which bind to the colchicine site of tubulin have recently 

emerged as attractive targets for cancer therapy. Pyrrole-containing molecules derived 

from nature have proven to be particularly useful as lead compounds for drug 

development. We designed and developed a series of substituted pyrroles that inhibit 

growth and promote death of breast tumor cells at nM and μM concentrations in human 

breast tumor cell lines. Subsequent experimental studies demonstrated that the highest 

degree of antiproliferative activity was expressed by JG-03-14 (3,5-dibromo-4-(3,4-

dimethoxyphenyl)-1Hpyrrole-2-carboxylic acid ethyl ester). COMPARE analysis across 

the NCI panel of cancer cell lines, along with molecular modeling studies, showed that JG-

03-14 had a similar mechanism of action to colchicine and combretastatin.  

 

The current work demonstrated that molecular modeling docking calculations along with 

HINT interaction analysis were able to complement experimental studies of binding in 

many aspects, including accurate representation of the complex structure and the binding 
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mode of inhibitors. HINT scoring function was used to investigate the structural aspects of 

the interactions. On the basis of calculations, the complexes were ranked according to their 

decreasing HINT scores. These results, calculated for 22 pyrrole compounds, provide insights 

into the structural requirements for the growth inhibitory activity/cytotoxicity of this class of 

agents and offer significant opportunity for structural alterations, which could lead to an 

improved drug candidate. Complex with JG-03-14 is the most stable corroborating the 

experimental data. These results are important for the understanding the binding process 

and valuable in the design of new Pyrrole-based colchicine site inhibitors. Compounds of 

this type have potential for further development. Hydropathic interaction analysis has 

provided a rationale for selecting the substituent on a parent ligand which will yield more 

tightly binding analogues.  

 

Stilbenes are a group of natural compounds with many biological activities. The 

mechanism of action of stilbenes is by interfering with microtubule polymerization through 

the colchicine-binding site. Two highly potent stilbenes, cis-3,40,5-trimethoxy-30-

aminostilbene (stilbene 5c) and cis-3,40,5-trimethoxy-30-hydroxystilbene (stilbene 6c) 

induce G2/M cell-cycle arrest and leukemic cell death in nanomolar range without 

affecting normal bone marrow progenitor cells. Animal studies showed that stilbenes are 

well tolerated and suppresses tumor growth in mice. Further experimental results indicated 

that stilbene 5c is a microtubule- interfering agent and can be potentially useful in 

leukemic therapy. A molecular modeling study was carried out to accurately represent the 

complex structure and the binding mode of a new class of stilbene-based tubulin inhibitors 
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that bind at the αβ-tubulin colchicine site.  Computational docking along with HINT score 

analysis fitted these inhibitors into the colchicine site and revealed detailed structure-

activity information useful for inhibitor design.  Quantitative analysis of the results was in 

good agreement with the in vitro antiproliferative activity of these derivatives (ranging 

from 3 nM to 100 μM) such that calculated and measured free energies of binding correlate 

with an r2 of 0.89 (standard error ± 0.85 kcal mol-1).  This correlation suggests that the 

activity of unknown compounds may be predicted. The results are important for 

understanding the binding process and valuable in the design of new stilbene-based 

colchicine site inhibitors.  

 

Apart from the application of computational methodologies, design and development of 

new computational tools has also been discussed in the manuscript. The development and 

implementation of a novel cavity detection algorithm is also reported and discussed. The 

algorithm named VICE (Vectorial Identification of Cavity Extents) utilizes HINT toolkit 

functions to identify and delineate binding pocket in a protein. This algorithm, which is 

based on geometric criteria applied to simple integer grid maps to delineate binding sites, 

is very efficient. The program was applied to a representative set of proteins from different 

classes having binding pockets of different shapes and sizes. It was demonstrated that the 

application is capable of detecting and delineating indentations, cavities, pockets, voids, 

grooves, channels, tunnels, pores and surface regions on protein. The interactive front-end 

provides a quick and simple procedure for identifying, displaying and manipulating 

cavities in a known protein structure. In addition to computing volumes, our method also 
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provides information on atoms, residues and chains which contribute to the cavities. These 

observations have been most thoroughly characterized and correlate well with the 

experimental data.  

 

The study also implemented the computational titration algorithm to understand the 

complexity of ligand binding and protonation state in the active site of HIV-1 protease.  

The importance of taking into account pH and ionization states of residues, which strongly 

affect the process of ligand binding, for correctly predicting the binding free energy is 

discussed. The application of the computational titration protocol to a set of six HIV-1-

cyclic inhibitor complexes was carried out. The binding energy was evaluated with the 

HINT scoring function. The results were encouraging, giving an average error of ± 2.5 kcal 

mol-1 in the prediction of binding energy. The titration algorithm allowed the 

identification, modeling and optimization of the multiple protonation states of residues and 

ligand functional groups at the protein-ligand active site.  This approach allows generating 

hypotheses on the best model for binding, i.e., the model with protonation corresponding to 

the optimal binding energy.  In considering all the ionizable residues at the active site and 

modeling all the possible protonation states of residues and functional groups at this site, 

the computational titration algorithm represents fairly realistically the fluxional behavior of 

hydrogens in solvated biological systems.   

  

To conclude, the overall purpose of this multidisciplinary endeavour was to design and 

develop novel therapeutics for cancer and understand the molecular mechanism involved 
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in drug action using computational tools. A second synergistic goal was to develop new 

computational tools that will aid in design bioactive molecules and understanding the 

molecular mechanism of protein-ligand binding process. To this end, application of 

molecular modeling has facilitated the design and development of the new anti-cancer 

compounds and has served to improve the understanding of the underlying mechanisms of 

microtubule depolymerizing agents. In its most general terms, the overall design and 

refinement of the novel antitumor compounds proposed herein is a fundamental step 

towards establishing a knowledge base that will enable the synthesis and testing of 

effective chemotherapeutic agents. The HINT force field can provide atomic level details 

of interactions and may help in the design of more selective drug molecules. The HINT 

program finds extensive application in drug design project and the knowledge acquired 

will prove to be productive and of scientific significance. This research will further provide 

the scientific community with additional knowledge that will help them in the de novo 

identification and characterization of binding site and to understand the relevant molecular-

level interactions.   
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